Browse > Article
http://dx.doi.org/10.12989/was.2022.35.3.177

Aerodynamic properties of a streamlined bridge-girder under the interference of trains  

Li, Huan (National Engineering research center for High Speed Railway construction, Central South University)
He, Xuhui (National Engineering research center for High Speed Railway construction, Central South University)
Hu, Liang (NatHaz Modeling Laboratory, University of Notre Dame)
Wei, Xiaojun (National Engineering research center for High Speed Railway construction, Central South University)
Publication Information
Wind and Structures / v.35, no.3, 2022 , pp. 177-191 More about this Journal
Abstract
Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.
Keywords
aerodynamics; streamlined bridge-girder; wind engineering; wind tunnel test;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Naudascher, E. and Wang, Y. (1993), "Flow-induced vibrations of prismatic bodies and grids of prisms", J. Fluids Struct., 7(4), 341-373. https://doi.org/10.1006/jfls.1993.1021.   DOI
2 Ogueta-Gutierrez, M., Franchini, S. and Alonso, G. (2014), "Effects of bird protection barriers on the aerodynamic and aeroelastic behaviour of high speed train bridges", Eng. Struct., 81 22-34. https://doi.org/10.1016/j.engstruct.2014.09.035.   DOI
3 Olmos, J.M. and Astiz, M.A. (2018), "Improvement of the lateral dynamic response of a high pier viaduct under turbulent wind during the high-speed train travel", Eng. Struct., 165, 368-385. https://doi.org/10.1016/j.engstruct.2018.03.054.   DOI
4 Olmos, J.M. and Astiz, M.A. (2018), "Non-linear vehicle-bridgewind interaction model for running safety assessment of highspeed trains over a high-pier viaduct", J. Sound Vib., 419, 63-89. https://doi.org/10.1016/j.jsv.2017.12.038.   DOI
5 Parker, R. and Welsh, M. (1983), "Effects of sound on flow separation from blunt flat plates", Int. J. Heat Fluid Flow. 4(2), 113-127. https://doi.org/10.1016/0142-727X(83)90014-0.   DOI
6 Sarkic, A., Fisch, R., Hoffer, R. and Bletzinger, K.-U. (2012), "Bridge flutter derivatives based on computed, validated pressure fields", J. Wind Eng. Ind. Aerod., 104-106, 141-151. "Bridge flutter derivatives based on computed, validated pressure fields.   DOI
7 Suzuki, M., Tanemoto, K. and Maeda, T. (2003), "Aerodynamic characteristics of train/vehicles under cross winds", J. Wind Eng. Ind. Aerod., 91(1-2), 209-218. https://doi.org/10.1016/S0167-6105(02)00346-X.   DOI
8 Tan, B.T., Thompson, M.C. and Hourigan, K. (2003), "Sources of acoustic resonance generated by flow around a long rectangular plate in a duct", J. Fluids Struct., 18(6), 729-740. https://doi.org/10.1016/j.jfluidstructs.2003.08.016.   DOI
9 Wang, M., Li, X.-Z., Xiao, J., Zou, Q.-Y. and Sha, H.-Q. (2018), "An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds", J. Wind Eng. Ind. Aerod., 177, 92-100. https://doi.org/10.1016/j.jweia.2018.03.021.   DOI
10 Wu, T. and Kareem, A. (2011), "Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network", J. Wind Eng. Ind. Aerod., 99(4), 378-388. https://doi.org/10.1016/j.jweia.2010.12.011.   DOI
11 Cheli, F., Ripamonti, F., Rocchi, D. and Tomasini, G. (2010), "Aerodynamic behaviour investigation of the new EMUV250 train to cross wind", J. Wind Eng. Ind. Aerod., 98(4-5), 189-201. https://doi.org/10.1016/j.jweia.2009.10.015.   DOI
12 Barcala, M.A. and Meseguer, J. (2007), "An experimental study of the influence of parapets on the aerodynamic loads under cross wind on a two-dimensional model of a railway vehicle on a bridge", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 221(4), 487-494.   DOI
13 Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S. and Tomasini, G. (2008), "Crosswind action on rail vehicles: Wind tunnel experimental analyses", J. Wind Eng. Ind. Aerod., 96(5), 584-610. https://doi.org/10.1016/j.jweia.2008.02.030.   DOI
14 Caracoglia, L. and Jones, N.P. (2003), "Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections", J. Wind Eng. Ind. Aerod., 91(3), 371-402. https://doi.org/10.1016/S0167-6105(02)00399-9.   DOI
15 Chen, X.Z. and Kareem, A. (2002), "Advances in modeling of aerodynamic forces on bridge decks", J. Eng. Mech., 128(11), 1193-1205.   DOI
16 Diana, G., Rocchi, D., Argentini, T. and Muggiasca, S. (2010), "Aerodynamic instability of a bridge deck section model: Linear and nonlinear approach to force modeling", J. Wind Eng. Ind. Aerod., 98(6-7), 363-374. https://doi.org/10.1016/j.jweia.2010.01.003.   DOI
17 Guissart, A., Andrianne, T., Dimitriadis, G. and Terrapon, V.E. (2019), "Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number", J. Wind Eng. Ind. Aerod., 189 289-303. https://doi.org/10.1016/j.jweia.2019.03.026.   DOI
18 Jiang, B.S., Zhou, Z.Y., Yan, K.J. and Hu, C.X. (2021), "Effect of web inclination of streamlined flat box deck on aerostatic performance of a bridge", J. Bridge Eng., 26(2). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001663.   DOI
19 Baker, C.J. (2010), "The simulation of unsteady aerodynamic cross wind forces on trains", J.Wind Eng. Ind. Aerod., 98(2), 88-99. https://doi.org/10.1016/j.jweia.2009.09.006.   DOI
20 Jain, A., Jones, N.P. and Scanlan, R.H. (1996), "Coupled flutter and buffeting analysis of long-span bridges", J. Struct. Eng., 122(7), 716-725. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(716).   DOI
21 Larose, G.L. and Livesey, F.M. (1997), "Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate", J. Wind Eng. Ind. Aerod., 69-71 851-860. https://doi.org/10.1016/S0167-6105(97)00211-0.   DOI
22 Larsen, A. and Wall, A. (2012), "Shaping of bridge box girders to avoid vortex shedding response", J. Wind Eng. Ind. Aerod., 104 159-165. https://doi.org/10.1016/j.jweia.2012.04.018.   DOI
23 Li, H., He, X.H., Wang, H.F. and Kareem, A. (2019), "Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds", J. Fluids Struct., 91. https://doi.org/10.1016/j.jfluidstructs.2019.102717.   DOI
24 Li, X.-Z., Wang, M., Xiao, J., Zou, Q.-Y. and Liu, D.-J. (2018), "Experimental study on aerodynamic characteristics of highspeed train on a truss bridge: A moving model test", J. Wind Eng. Ind. Aerod., 179 26-38. https://doi.org/10.1016/j.jweia.2018.05.012.   DOI
25 Barcala, M.A. and Meseguer, J. (2008), "Visualization study of the influence of parapets on the flow around a train vehicle under cross winds", WIT Transact. Built Environ., 103, 797-806.   DOI
26 Deniz, S. and Staubli, T. (1997), "Oscillating rectangular and octagonal profiles: Interaction of leading- and trailing-edge vortex formation", J. Fluids Struct,. 11(1), 3-31. https://doi.org/10.1006/jfls.1996.0065.   DOI
27 Li, Y., Qiang, S., Liao, H. and Xu, Y.L. (2005), "Dynamics of wind-rail vehicle-bridge systems", J. Wind Eng. Ind. Aerod., 93(6), 483-507. https://doi.org/10.1016/j.jweia.2005.04.001.   DOI
28 Lystad, T.M., Fenerci, A. and Oiseth, O. (2020), "Buffeting response of long-span bridges considering uncertain turbulence parameters using the environmental contour method", Eng. Struct., 213 110575. https://doi.org/10.1016/j.engstruct.2020.110575.   DOI
29 Larose, G.L. and Mann, J. (1998), "Gust loading on streamlined bridge decks", J. Fluids Struct., 12(5), 511-536. https://doi.org/10.1006/jfls.1998.0161.   DOI
30 Baker, C. (2014), "A review of train aerodynamics Part 1-Fundamentals", Aeronaut. J., 118(1201), 201-228. https://doi.org/10.1017/S000192400000909X.   DOI
31 Nakamura, Y., Ohya, Y. and Tsuruta, H. (1991), "Experiments on vortex shedding from flat plates with square leading and trailing edges", J. Fluid Mech., 222, 437-447. https://doi.org/10.1017/S0022112091001167.   DOI
32 Huang, R.F., Lin, B.H. and Yen, S.C. (2010), "Time-averaged topological flow patterns and their influence on vortex shedding of a square cylinder in crossflow at incidence", J. Fluids Struct., 26(3), 406-429. https://doi.org/10.1016/j.jfluidstructs.2010.01.003.   DOI
33 Ito, Y., Shirato, H. and Matsumoto, M. (2014), "Coherence characteristics of fluctuating lift forces for rectangular shape with various fairing decks", J. Wind Eng. Ind. Aerod., 135 34-45. https://doi.org/10.1016/j.jweia.2014.10.003.   DOI
34 Madaniyazi, L., Li, S., Li, S. and Guo, Y. (2020), "Candidate gene expression in response to low-level air pollution", Environ Int. 140, 105610. https://doi.org/10.1016/j.envint.2020.105610.   DOI
35 Okajima, A. (1982), "Strouhal numbers of rectangular cylinders", J. Fluid Mech., 123 379-398. https://doi.org/10.1017/S0022112082003115.   DOI
36 Paidoussis, M.P., Price, S.J. and De Langre, E. (2010), Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, Near York, USA.
37 Xu, Y.L., Tan, Z.X., Zhu, L.D., Zhu, Q. and Zhan, S. (2019), "Buffeting-induced stress analysis of long-span twin-box-beck bridges based on POD pressure modes", J. Wind Eng. Ind. Aerod., 188 397-409. https://doi.org/10.1016/j.jweia.2019.03.016.   DOI
38 Xiang, H., Li, Y. and Wang, B. (2015), "Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds", Wind Struct., 20(2), 237-247. https://doi.org/10.12989/was.2015.20.2.237.   DOI
39 Xiang, H., Tang, P., Zhang, Y. and Li, Y. (2020), "Random dynamic analysis of vertical train-bridge systems under small probability by surrogate model and subset simulation with splitting", Railway Eng. Sci., 28(3), 305-315. https://doi.org/10.1007/s40534-020-00219-6.   DOI
40 Xu, Y.L. and Ding, Q.S. (2006), "Interaction of railway vehicles with track in cross-winds", J. Fluids Struct., 22(3), 295-314. https://doi.org/10.1016/j.jfluidstructs.2005.11.003.   DOI
41 Sarwar, M.W., Ishihara, T., Shimada, K., Yamasaki, Y. and Ikeda, T. (2008), "Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model", J. Wind Eng. Ind. Aerod., 96(10-11), 1895-1911. https://doi.org/10.1016/j.jweia.2008.02.015.   DOI
42 Wang, H., Tao, T.Y., Zhou, R., Hua, X.G. and Kareem, A. (2014), "Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge", J. Wind Eng. Ind. Aerod., 128 12-21. https://doi.org/10.1016/j.jweia.2014.03.004.   DOI
43 Wu, T. and Kareem, A. (2013), "Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes", J. Fluids Struct., 43 347-370. https://doi.org/10.1016/j.jfluidstructs.2013.09.015.   DOI
44 Zhou, T., Dowell, E. and Feng, S.S. (2019), "Computational investigation of wind tunnel wall effects on buffeting flow and lock-in for an airfoil at high angle of attack", Aerosp Sci Technol., 95. https://doi.org/10.1016/j.ast.2019.105492.   DOI
45 CEN (2018), Railway Applications. Aerodynamics. Requirements and Test Procedures for Crosswind Assessment.
46 Xia, H., Zhang, N. and Guo, W.W. (2006), "Analysis of resonance mechanism and conditions of train-bridge system", J. Sound Vib., 297(3-5), 810-822. https://doi.org/10.1016/j.jfluidstructs.2013.09.015.   DOI
47 Xiang, H., Li, Y. and Wang, B. (2015), "Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds", Wind Struct., 20(2), 237-247.   DOI
48 Yang, W.H., Chen, W.L. and Li, H. (2020), "Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method", J. Fluids Struct., 96. https://doi.org/10.1016/j.jfluidstructs.2020.103017.   DOI
49 Yen, S.C. and Yang, C.W. (2011), "Flow patterns and vortex shedding behavior behind a square cylinder", J. Wind Eng. Ind. Aerod., 99(8), 868-878. https://doi.org/10.1016/j.jweia.2011.06.006.   DOI
50 Zhu, L.D., Meng, X.L. and Guo, Z.S. (2013), "Nonlinear mathematical model of vortex-induced vertical force on a flat closed-box bridge deck", J. Wind Eng. Ind. Aerody., 122, 69-82. https://doi.org/10.1016/j.jweia.2013.07.008.   DOI
51 Zhu, Q., Xu, Y.L., Zhu, L.D. and Li, H. (2018), "Vortex-induced vibration analysis of long-span bridges with twin-box decks under non-uniformly distributed turbulent winds", J. Wind Eng. Ind. Aerod., 172, 31-41. https://doi.org/10.1016/j.jweia.2017.11.005.   DOI
52 Liu, Z.W., Shen, J.S., Li, S.Q., Chen, Z.Q., Ou, Q.B. and Xin, D.B. (2021), "Experimental study on high-mode vortex-induced vibration of stay cable and its aerodynamic countermeasures", J. Fluids Struct., 100. https://doi.org/10.1016/j.jfluidstructs.2020.103195.   DOI
53 Ma, C.M., Wang, J.X., Li, Q.S. and Liao, H.L. (2019), "3D aerodynamic admittances of streamlined box bridge decks", Eng. Struct., 179, 321-331. https://doi.org/10.1016/j.engstruct.2018.11.007.   DOI
54 Guo, W., Wang, Y., Xia, H. and Lu, S. (2014), "Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system", Sci. China Technol. Sci., 58(2), 219-225. https://doi.org/10.1007/s11431-014-5675-1.   DOI
55 He, X.H., Li, H., Wang, H.F., Fang, D.X. and Liu, M.T. (2017), "Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder", J. Wind Eng. Ind. Aerod., 170 56-67. https://doi.org/10.1016/j.jweia.2017.08.009.   DOI
56 Li, Y., Hu, P., Xu, Y.-L., Zhang, M. and Liao, H. (2014), "Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test", Wind Struct., 19(2), 145-167. https://doi.org/10.12989/was.2014.19.2.145.   DOI
57 Liao, H.L., Mei, H.Y., Hu, G., Wu, B. and Wang, Q. (2021), "Machine learning strategy for predicting flutter performance of streamlined box girders", J. Wind Eng. Ind. Aerod., 209 104493. https://doi.org/10.1016/j.jweia.2020.104493.   DOI
58 Ma, C., Duan, Q., Li, Q., Chen, K. and Liao, H. (2018), "Buffeting Forces on Static Trains on a Truss Girder in Turbulent Crosswinds", J. Bridge Eng., 23(11), 04018086. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001305.   DOI
59 Mannini, C., Sbragi, G. and Schewe, G. (2016), "Analysis of selfexcited forces for a box-girder bridge deck through unsteady RANS simulations", J. Fluids Struct., 63 57-76. https://doi.org/10.1016/j.jfluidstructs.2016.02.007.   DOI
60 Montoya, M.C., Nieto, F., Alvarez, A.J., Hernandez, S., Jurado, J.A. and Sanchez, R. (2018), "Numerical simulations of the aerodynamic response of circular segments with different corner angles by means of 2D URANS. Impact of turbulence modeling approaches", Eng. Appl. Comput. Fluid Mech., 12(1), 750-779. https://doi.org/10.1080/19942060.2018.1520741.   DOI