• Title/Summary/Keyword: vortex induced motion

Search Result 82, Processing Time 0.024 seconds

VORTEX-INDUCED VIBRATION SIMULATION OF MULTIPLE CIRCULAR CYLINDERS IN LOW REYNOLDS NUMBER FLOWS USING CARTESIAN MESHES (직교 격자를 이용한 저 레이놀즈 수 유동장내 다중 배치된 실린더의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.73-82
    • /
    • 2011
  • In this paper, the vortex-induced vibration of circular cylinders is studied using the immersed boundary method on the Cartesian mesh. The Reynolds numbers considered is from 100 to 200. Using the configuration of tendemly arranged multiple circular cylinders, the vortex shedding behind of the cylinders and their flow-induced motion are investigated. The staggered MAC grid arrangement, which is the typical grid system for the incompressible flow on the Cartesian meshes, is utilized. Pressure correction method is applied for solving the divergence-free incompressible velocity field. The body motion is described by immersed boundary technique that has advantages for moving object on the fixed computational domain. It is also discussed for the computational noise in hydrodynamic forces when body motion is represented by the immersed boundary method. The Predictor/Corrector method is used for simulating the nonlinear response of the elastically mounted cylinder excited by vortex-shedding.

Large Eddy Simulation of Free Motion of Marine Riser using OpenFOAM (오픈폼을 활용한 자유진동하는 라이저 주위 유동의 LES 해석)

  • Jung, Jae-Hwan;Jeong, Kwang-Leol;Gill, Jae-Heung;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.387-393
    • /
    • 2019
  • In this study, the free motion of a riser due to vortex shedding was numerically simulated with Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) turbulence models. A numerical simulation program was developed by applying the Rhie-Chow interpolation method to the pressure correction of the OpenFOAM standard solver pimpleDyMFoam. To verify the developed program, the vortex shedding around the fixed riser at Re = 3900 was calculated, and the results were compared with the existing experimental and numerical data. Moreover, the vortex-induced vibration of a riser supported by a linear spring was numerically simulated while varying the spring constant. The results are compared with published direct numerical simulation (DNS) results. The present calculation results show that the numerical method is appropriate for simulating the vortex-induced motion of a riser, including lock-in phenomena.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Some aspects of the dynamic cross-wind response of tall industrial chimney

  • Gorski, Piotr
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.259-279
    • /
    • 2009
  • The paper is concerned with the numerical study of the cross-wind response of the 295 m-tall six-flue industrial chimney, located in the power station of Belchatow, Poland. The response of the chimney due to turbulent wind flow is caused by the lateral turbulence component and vortex excitation with taking into account motion-induced wind forces. The cross-wind response has been estimated by means of the random vibration approach. Three power spectral density functions suggested by Kaimal, Tieleman and Solari for the evaluation of the lateral turbulence component response are taken into account. The vortex excitation response has been calculated by means of the Vickery and Basu's model including some complements. Motion-induced wind forces acting on a vibrating chimney have been modeled as a nonlinear aerodynamic damping force. The influence of three components mentioned above on the total cross-wind response of the chimney has been investigated. Moreover, the influence of damping ratios, evaluated by Multi-mode Random Decrement Technique, and number of mode shapes of the chimney have been examined. Computer programmes have been developed to obtain responses of the chimney. The numerical results and their comparison are presented.

Vortex induced vibrations and motions - Review, issues and challenges

  • Sahoo, Patitapaban;Domala, Vamshikrishna;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.301-333
    • /
    • 2022
  • Herein, we report meaningful and selective review of the progress made on 'Vortex Induced Vibration (VIV)' and 'Vortex Induced Motion (VIM)' of 'Structures of Specific Shapes (SoSS)' subjected to steady uniform flow and of relevance to/in marine structures. Important and critical elements of the numerical methods, experimental methods, and physical ideas are listed and analysed critically and the limitations of the current state of art of VIV/VIM are discussed in-detail. Our focus and aim are to analyse the existing researches with respect to the application in analyses, design and production of marine structures and the reported reviews centre on these only. We identify the critical and important issues that exist in the current literature and utilise these issues to highlight the challenges that need to be tackled to design and develop new age marine structures that can exist and operate safely in the areas of dominance by the VIV/VIM. Finally, we also identify some areas for future scope of research on VIV/VIM.

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section

  • Diana, G.;Resta, F.;Zasso, A.;Belloli, M.;Rocchi, D.
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.41-54
    • /
    • 2004
  • An analysis refinement of the Messina Strait suspension bridge project has been recently required, concerning mainly the yaw angle effects on the multi-box deck section aerodynamics and the vortex shedding at low reduced velocities $V^*$. In particular the possible interaction of the axial flow with the large cross beams has been investigated. An original test rig has been designed at this purpose allowing for both forced motion and free motion aero elastic tests, varying the average angle of attack ${\alpha}$ and the deck yaw angle ${\beta}$. The hydraulic driven test rig allowed for both dynamic and stationary tests so that both the stationary coefficients and the flutter derivatives have been evaluated for each yaw angle. Specific free motion tests, taking advantage from the aeroelastic features of the section model, allowed also the study of the vortex shedding induced phenomena.

Aerodynamic Methods for Mitigating the Wind-Induced Motions on the Tall Buildings (고층건축물의 풍진동 저감을 위한 공기역학적 방법)

  • Ha Young-Cheol;Kim Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.431-434
    • /
    • 2002
  • The excessive wind-induced motion of tall buildings most frequently result from vortex shedding induced across-wind oscillations. This form of excitation is most pronounced far relatively flexible, lightweight and lightly damped structure, e.g. tall building. This paper discusses aerodynamic means for mitigating the across-wind vortex shedding induced in such situations. Emphasis is on the change of the building cross section to design the building with openings from side to side which provide pressure equalization and tend to reduced the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. Wind tunnel test have been carried out on the Kumoh National University of Technology using rigid models with twenty-four kinds of opening shapes. Form these results, the effective opening shape, size and location for building to reducing wind-induced vortex shedding and responses are pointed out.

  • PDF

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.