• Title/Summary/Keyword: vortex excitation

Search Result 68, Processing Time 0.03 seconds

Flow of non-Newtonian fluid in a concentric annulus with rotation (환형관내 비뉴튼유체의 회전유동에 관한 연구)

  • Kim, Young-Ju;Woo, Nam-Sub;Seo, Byung-Taek;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

A Study on Evaluation Method for Piping Shell Mode Vibration (배관 Shell Mode 진동 평가방법에 대한 연구)

  • Chun, Chang-Bin;Park, Soo-Il;Chun, Hyong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

  • Liu, Mingyue;Xiao, Longfei;Yang, Lijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.906-919
    • /
    • 2015
  • The Deep Draft Semi-Submersible (DDS) concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM) stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around ${\alpha}=15^{\circ}$. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

Design to Control Vibration for Stay Cable with Damper (댐퍼도입에 의한 사장 케이블의 제진설계)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae;Seo, Ju Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.51-58
    • /
    • 2008
  • A cable element happens to vibration easily rather than other elements because a cable element has few rotational stiffness. Dynamic motion of stay cable is distinguished from vibration by wind and/or rain and excitation by support movement. Mostly a stay cable is vibrated by wind and/or rain except that when natural periods coincide between stiffening girder and stay cable. It happens to deterioration of serviceability and durability by vortex shedding, rainy-wind induced vibration, and galloping. Additional damping generated by installation of cable damper is well known good scheme against above phenomena. Researchers have lack of effort to develop the recommendations even if cable stayed bridges are designed and constructed in Korea. Therefore, development of the domestic recommendations should be achieved as soon as possible. This study suggests the consistent and systematic recommendations on vibration controlling design of stay cable by installation of damper. It gives readers two important methodologies that one evaluates required damping ratio, the other determines installing point considering efficiency.