Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2021.08.005

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method  

Jin, Qiu (Faculty of Engineering and the Environment, University of Southampton)
Xin, Jianjian (Institute of Naval Architecture and Ocean Engineering, Ningbo University)
Shi, Fulong (School of Shipping and Naval Arechitecture, Chongqing Jiaotong University)
Shi, Fan (Institute of Naval Architecture and Ocean Engineering, Ningbo University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.13, no.1, 2021 , pp. 691-706 More about this Journal
Abstract
This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.
Keywords
Cartesian grid method; Violent sloshing; Prismatic tank; Baffle height; Resonance frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao, Y., Chen, H.C., 2015. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method. Ocean Eng. 104, 10-30.   DOI
2 Zhao, D., Hu, Z., Chen, G., Lim, S., Wang, S., 2017. Nonlinear sloshing in rectangular tanks under forced excitation. Int. J. Nav. Arch. Ocean Eng. 10 (5), 545-565.   DOI
3 Akyildiz, H., 2012. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. J. Sound Vib. 331 (1), 41-52.   DOI
4 Cavalagli, N., Biscarini, C., Facci, A.L., Ubertini, F., Ubertini, S., 2017. Experimental and numerical analysis of energy dissipation in a sloshing absorber. J. Fluid Struct. 68, 466-481.   DOI
5 Eini, N., Afshar, M.H., Gargari, S.F., Shobeyri, G., Afshar, A., 2020. A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems. Eng. Comput. 1-21.
6 Faltinsen, O.M., Timokha, A.N., 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech. 470, 319-357.   DOI
7 Liu, D., Lin, P., 2009. Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36 (2), 202-212.   DOI
8 Jiang, S.C., Teng, B., Bai, W., Gou, Y., 2015. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action. Ocean Eng. 108, 140-154.   DOI
9 Jung, J.H., Yoon, H.S., Lee, C.Y., Shin, S.C., 2012. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank. Ocean Eng. 44, 79-89.   DOI
10 Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B., 2007. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34 (1), 3-9.   DOI
11 Lu, L., Jiang, S.C., Zhao, M., Tang, G.Q., 2015. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions. Ocean Eng. 108, 662-677.   DOI
12 Pirker, S., Aigner, A., Wimmer, G., 2012. Experimental and numerical investigation of sloshing resonance phenomena in a spring-mounted rectangular tank. Chem. Eng. Sci. 68 (1), 143-150.   DOI
13 Xin, J.J., Chen, Z.L., Shi, F., Shi, F.L., Jin, Q., 2020. Numerical simulation of nonlinear sloshing in a prismatic tank by a Cartesian grid based three-dimensional multiphase flow model. Ocean Eng. 213, 107629.   DOI
14 Yu, Y., Ma, N., Fan, S.M., Gu, X.C., 2017. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates. Ocean Eng. 129, 217-227.   DOI
15 Nave, J.C., Rosales, R.R., Seibold, B., 2010. A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys. 229 (10), 3802-3827.   DOI
16 Jiang, M., Ren, B., Wang, G., Wang, Y.X., 2014. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks. J. Hydrodyn. 5, 751-761.   DOI
17 Kim, Y., Shin, Y.S., Lee, K.H., 2014. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26 (5), 213-226.   DOI
18 Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227 (8), 3921-3939.   DOI
19 Liu, D., Tang, W., Wang, J., Xue, H., Wang, K., 2017. Modelling of liquid sloshing using clsvof method and very large eddy simulation. Ocean Eng. 129, 160-176.   DOI
20 Love, J.S., Haskett, T.C., 2018. Nonlinear modelling of tuned sloshing dampers with large internal obstructions: damping and frequency effects. J. Fluid Struct. 79, 1-13.   DOI
21 Panigrahy, P.K., Saha, U.K., Maity, D., 2009. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36 (3-4), 213-222.   DOI
22 Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., Botia-Vera, E., 2009. A set of canonical problems in sloshing, Part I: pressure field in forced roll-comparison between experimental results and SPH. Ocean Eng. 36 (2), 168-178.   DOI
23 Shi, F., Xin, J., Jin, Q., 2019. A Cartesian grid based multiphase flow model for water impact of an arbitrary complex body. Int. J. Multiphas. Flow 110, 132-147.   DOI
24 Sotiropoulos, S., Yang, X., 2014. Immersed boundary methods for simulating fluid-structure interaction. Prog. Aero. Sci. 65, 1-21.   DOI
25 Windt, C., Davidson, J., Chandar, D., Faedo, Nicolas, Ringwood, J., 2019. Evaluation of the overset grid method for control studies of wave energy converters in openfoam numerical wave tanks. J. Ocean Eng. Mar. Energy 6, 55-70.   DOI
26 Faltinsen, O.M., Timokha, A.N., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167-200.   DOI
27 Lee, S.H., Lee, Y.G., Jeong, K.L., 2011. Numerical simulation of three-dimensional sloshing phenomena using a finite difference method with marker-density scheme. Ocean Eng. 38 (1), 206-225.   DOI
28 Wu, C.H., Faltinsen, O.M., Chen, B.F., 2012. Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluid 63, 9-26.   DOI
29 Cao, X.Y., Ming, F.R., Zhang, A.M., 2014. Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47, 241-254.   DOI
30 Chu, C.R., Wu, Y.R., Wu, T.R., 2018. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282-292.   DOI
31 Eswaran, M., Saha, U.K., Maity, D., 2009. Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation. Comput. Struct. 87 (3), 198-205.   DOI
32 Jin, X., Lin, P., 2009. Viscous effects on liquid sloshing under external excitations. Ocean Eng. 171, 695-707.   DOI
33 Godderidge, B., Turnock, S., Earl, C., Tan, M., 2009. The effect of fluid compressibility on the simulation of sloshing impacts. Ocean Eng. 36 (8), 578-587.   DOI
34 Faltinsen, O.M., Timokha, A.N., 2009. Sloshing. Cambridge University Press, New York, USA, Cambridge.
35 Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N., 2003. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1-42.   DOI
36 Grotle, E.L., Bihs, H., Aesoy, V., 2017. Experimental and numerical investigation of sloshing under roll excitation at shallow liquid depths. Ocean Eng. 138, 73-85.   DOI
37 Hu, T., Wang, S., Zhang, G., Sun, Z., Zhou, B., 2019. Numerical simulations of sloshing flows with an elastic baffle using a sph-spim coupled method. Appl. Ocean Res. 93, 101950.   DOI
38 Bai, W., Liu, X., Koh, C.G., 2015. Numerical study of violent LNG sloshing induced by realistic ship motions using level set method. Ocean Eng. 97, 100-113.   DOI
39 Kang, D.H., Lee, Y.B., 2005. Summary Report of Sloshing Model Test for Rectangular Model, No. 001. Daewoo Shipbuilding & Marine Engineering Co., Ltd., South Korea.
40 Xin, J., Shi, F., Jin, Q., Ma, L., 2019. Gradient-Augmented level set two-phase flow method with pretreated reinitialization for three-dimensional violent sloshing. J. Fluid Eng. 142 (1).
41 Xue, M.A., Zheng, J., Lin, P., 2012. Numerical simulation of sloshing phenomena in cubic tank with multiple baffles. J. Appl. Math. 1-21, 2012.
42 Yang, J.M., 2016. Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J. Hydrody. Ser B 28 (5), 713-730.   DOI