• Title/Summary/Keyword: vortex dynamics

Search Result 366, Processing Time 0.032 seconds

Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model

  • Ishihara, Takeshi;Liu, Zhenqing
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.89-111
    • /
    • 2014
  • The dynamics of a tornado-like vortex with touching down is investigated by using the LES turbulence model. The detailed information of the turbulent flow fields is provided and the force balances in radial and vertical directions are evaluated by using the time-averaged axisymmetric Navier-Stokes equations. The turbulence has slightly influence on the mean flow fields in the radial direction whereas it shows strong impacts in the vertical direction. In addition, the instantaneous flow fields are investigated to clarify and understand the dynamics of the vortex. An organized swirl motion is observed, which is the main source of the turbulence for the radial and tangential components, but not for the vertical component. Power spectrum analysis is conducted to quantify the organized swirl motion of the tornado-like vortex. The gust speeds are also examined and it is found to be very large near the center of vortex.

Simple Harmonic Oscillation of Ferromagnetic Vortex Core

  • Kim, Jun-Yeon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.113-117
    • /
    • 2007
  • Here we report a theoretical description of ferromagnetic vortex dynamics. Based on Thiele's formulation of the Landau-Lifshitz-Gilbert equation, the motion of the vortex core could be described by a function of the vortex core position. Under a parabolic potential generated in the circular magnetic patterns, the vortex core showed a circular rotation-namely the gyrotropic motion, which could be described by a 2-dimensional simple harmonic oscillator. The gyrotropic frequency and apparent damping constant were predicted and compared with the values obtained micromagnetic calculation.

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

Numerical Analysis on the Flow Vortex in a Multi Pump Intake using a Pump Sump Model (다중 펌프 흡수정에서 발생하는 Vortex 수치 해석에 관한 연구)

  • Park, No-Suk;Kim, Seong-Su;Hyun, Sang-Rak;Park, Jong-Ho;Ahn, Young-Seog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • In order to suggest the methodology for achieving anti-vortex within multi pump intake well, the field test and CFD(Computational Fluid Dynamics) simulation were conducted. The filed test were carried out for domestic W_multi pump intake well according to usual operation condition through the naked observation. From the results, operating #4, #5, #8 and 9# pumps, the vortex and swirl occurred above #4 and #9 intake pipe within two wells. For qualitative analysis, a commercial CFD code, using sump model, was used to predict the vortex generation within the selected pump intake facility accurately. The analysed results by CFD show that the vortex structure and location are in accordance with the results of the field test.

Josephson Vortex Dynamics in Tilted Magnetic Fields (경사 자기장 하에서의 조셉슨 볼텍스 동역학)

  • Jin, Yong-Duk;Ki, Dong-Keun;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • We report on the Josephson vortex dynamics in $Bi_2Sr_2CaCuO_{8+\delta}$ natural Josephson junctions by c-axis tunneling measurements. Beside the quasiparticle branches in the current-voltage characteristics, a new set of multiple branches, referred to as Josephson-vortex-flow branches (JVFBs), are observed. The JVFBs emerge in an in-plane magnetic field above $H_0\;=\;{\Phi}_0/{\gamma}s^2$ and show highly hysteretic behavior, which can be explained in terms of the recently proposed dynamic-phase-separation model. In this work we examined the effect on the JVFBs by the presence of pancake vortices generated as the external magnetic field was applied slightly tilted from the in-plane direction. JVFBs were found to become larger and prominent with increasing pancake vortex density as the tilt angle increased, which were presumably caused by slowing down of a Josephson vortex lattice in the presence of pancake vortices.

  • PDF

Change of Vortex Dynamics in the Cylinder Wake by the Lock-on to Oscillatory Incident Flow (진동 유동장에서 유동공진에 의한 실린더 후류의 와류 특성 변화)

  • Kim, Won-Tae;Sung, Jae-Yong;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1645-1654
    • /
    • 2003
  • When vortex shedding is locked-on to a single frequency oscillatory flow, the variations of vortex dynamics are investigated using a time-resolved PIV system. Wake regions of recirculation and vortex formation, dynamic behavior of the shed vortices and the Reynolds stress fields are measured in the wake-transition regime at the Reynolds number 360. In the lock-on state, reduction of the wake region occurs and flow energy distributed downstream moves upstream being concentrated near the cylinder base. To observe the dynamic behavior of the shed vortices, the trajectory of the vortex center extended to the inside of the wake bubble is considered, which describes well the formation and evolution processes. The Reynolds stresses and their contributions to overall force balance on the wake bubble manifest the increase of the drag force by the lock-on.

Control of Propeller Hub Vortex for Water Treatment Mixer (수처리 교반기의 프로펠러 허브 볼텍스 제어)

  • Kim, Dae-Han;Moon, Young-June
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • In this study, the generation of the propeller hub vortex was analyzed and a PBCF(Propeller Boss Cap Fins) was designed to control the propeller hub vortex. A RANS(Reynolds-averaged Navier-stokes) approach is employed to predict the hub vortex characteristics. The hub profile is an important factor but only a small increase (1.9%) of efficiency was obtained with the hub profile modification. The propeller hub vortex was eliminated by installing the PBCF and as a result, the propeller efficiency was increased by 5.6%.

Effect of the Perpendicular Magnetic Field and Nonadiabatic Spin-transfer Torque on the Vortex Dynamics

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.157-159
    • /
    • 2008
  • The effect of the perpendicular field on the trajectory of a vortex core driven by spin-transfer torque was investigated using micromagnetic simulations. The trajectory of the vortex core was staggered due to distortions of the moving vortex core. The core trajectory was affected by both the perpendicular field and ${\beta}$ value, which is the relative magnitude of nonadiabatic spin torque to the adiabatic spin torque. This suggests that the effect of the perpendicular field should be considered when examining a vortex core trajectory affected by ${\beta}$.