• Title/Summary/Keyword: vortex cyclone

Search Result 42, Processing Time 0.027 seconds

A Study on the Performance Test of Axial-flow Cyclone Separator (축상유입식 사이클론 집진기 성능시험에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • Along with dust collection efficiency, pressure loss is a very important cyclone operation factor. A severe rise in pressure loss causes the problem of cost. To solve the problem, the method connecting axial-vane type cyclones in parallel is suggested recently. The axial vane type cyclone dust collector applied in this study is a small portable type. Multiple cyclones are installed in a round type. The basic performance test on the axial vane type cyclone dust collector was conducted. As a result, the cut size reduced along with a rise in the wind velocity of the cyclone dust collector inlet. According to the test on dust collection efficiency, the effect of dust collection began to appear in the range of 3㎛ and dust collection efficiency was greatly improved at 5 ㎛. The noise of the cyclone dust collector well met the fan sound power level of KSB 6361.

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Application of Cyclone to Removal of Hot Particulate in Hot Cell (Hot Cell 내의 고방사능 분진 제거를 위한 사이클론 적용 실험)

  • Kim Gye Nam;Lee Sung Yeol;Won Hui Jun;Jung Chong Hun;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 $\mu$m and UO$\_2$. A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 $\mu$m, the collection efficiency of the particulate was more than $80\%$ and when the size of simulated particulate was less than 1.0 urn, the collection efficiency decreased by less than $70\%$. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12m/sec, the collection efficiency was higher than $70\%$, but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased $2\%$. It was found that effect by attachment of sub-cone was not serious.

  • PDF

Optimal Design of Vacuum Cleaner with a Multi Cyclone (멀티사이클론을 이용한 진공청소기의 최적설계에 관한 연구)

  • Ha, Gun-Ho;Kim, Eung-Dal;Yang, Byung-Sun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • Cyclone, a type of particle collector widely used in the field of ambient sampling and industrial particulate control, is the principal type of gas-solids separator that uses a centrifugal force. The goal of this study is to design and evaluate the cyclone that can be used for the household vacuum cleaners. A multi cyclone with a 1st cyclone and several 2nd cyclones is designed to improve dust collection efficiency. The dust collection efficiency and the suction power of 1st cyclone are evaluated. And the dust collection efficiency and the suction power of multi cyclone are evaluated according to various sizes of inlet and vortex finder. As a result, a cone shape porous filter has better dust collection efficiency than a cylinder shape porous filter. The dust collection efficiency of a multi cyclone is 3.5% greater than that of a single cyclone.

Comparison of Tangential and Axial Flow Cyclones for Small Dust Collectors (소형 집진기용 접선식 및 축류식 사이클론 성능비교)

  • Lee, Sungwon;Lee, Chungmin;Yoon, Jong-Hwan
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • The tangential and axial cyclones were fabricated using a 3D printer and the total collecting efficiency, cut-diameter, and pressure drop characteristics of the two types of cyclones with the same inlet area were investigated experimentally. The results show that the total collecting efficiency tends to increase as the inlet velocity increases. However, at a 20m/s condition of the tangential cyclone, the collected particles were re-entrained to the ascending vortex flow, resulting in a decrease of the total collecting efficiency. In the axial cyclone, the cross-sectional area is designed to increase at the inlet and the velocity is reduced, so that the re-entrainment effect does not appear in this study. The pressure loss of the tangential cyclone was larger than that of the axial cyclone. The cut-diameter tends to decrease with increasing the inlet velocity in two types of cyclones, except for the 20m/s condition of the tangential cyclone.

Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit (공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Youngmin;Kim, Se-Young;Kim, Myeoung-Joon;Kim, Hojoong;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

Production of Carbonized Rice Husks by a Cyclone Combustor(I) (사이클론 연소기를 이용한 탄화왕겨의 제조(I))

  • 고길표;노수영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Carbonized rice husk(char from rice husk) can be used to improve soils for planting, seedlings, horiculture, pomiculture and truck gardening. Although it is not a fertilizer in nature, it stimulates the growth of plants. Carbonized rice husk is highly recommended for raising soil/water temperature, keeping moisture and aerating roots of plants. The objective of this study was to develop the effective production method of carbonized rice husks by a non-slagging vertical cyclone combustor. A cyclone combustor w vortex collecor Pocket in addition to central collector pocket was selected and tested. Isothermal tests and mixed firing with LPG and rice husk were performed in order to characterize the system. hut rice husk was used during the isothermal test to find the mass collected of rice husk. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. The composition of original and carbonized rice husks was analyzed by the ultimate analysis. With the air flow rate of 20 ㎥/h, LPG flow rate of 0.45 1/min, the required carbonized rice husk could be obtained.

  • PDF

A Study on Removal Efficiency of VOCs using Vortex Cyclones (보텍스 사이클론을 이용한 VOCs 제거효율에 관한 연구)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-199
    • /
    • 2005
  • The principle of vortex cyclone was applied to enhance the treatment efficiency of waste air streams containing particulate matters, phenol, and others. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by Joule-Thomson expansion as the pressurized air and pulverized activated carbon were introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube of vortex cyclone. Easily condensible vapors were adsorbed and/or condensed forcibly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves or on pulverized activated carbons. These types of coagulation or condensation rates were rapidly promoted by increase in their diameter. The maximum removal efficiency obtained from this experiment for the removal of carbon dioxide and phenol was about 87.3 and 93.8 percent, respectively. Phenol removal efficiency was increased with the relative humidities and enhanced by pulverized activated carbon added. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 50%. It is believed that the moisture, particulate matters, and the pressure of the process air introduced could control the removal efficiency of VOCs.

A numerical fluid dynamic study of a high temperature operating cyclone (고온 작동 싸이클론 유체역학적 거동 전산 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1033-1040
    • /
    • 2009
  • One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and temperature appears contrary each other. Therefore, the decrease of collection efficiency caused by the high operating temperature mainly due to the decrease of gaseous density can be remedied by increase of operating pressure. After the evaluation of the program, a series of parametric investigations are performed in terms of major cyclone design or operating parameters such as tangential velocity and vortex finder diameter for dusts of a certain range of particle diameters, etc. As expected, tangential velocity plays the most important effect on the collection efficiency. And the efficiency was not affected significantly by the change of the length of vortex finder but the diameter of vortex finder plays an important role for the enhancement of collection efficiency.

Production of Carbonized Rice Husk by a Cyclone Combustor(II) (사이클론 연소기를 이용한 탄화왕겨의 제조(II))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.487-492
    • /
    • 1999
  • One of effective utilization method of rice husk is to utilize it as culture material by carbonizing the rice husk. As a second part of a series to investigate the effective and continuous production of carbonized rice husk by a cyclone combustor, a non-slagging vertical cyclone combustor without vortex collector pocket was introduced. Isothermal and mixed firing with LPG and rice husk were undertaken in order to characterize the system. Inert rice husk was used during the isothermal test to find mass of rice husk collected. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. Cyclone combustor was operated at temperatures of 1,273~1,473K. Detailed combustion data were obtained from a pilot unit with the air flow rate of 70m$^3$/h and rice husk feed of 2kg. The equivalence ratio ranged from 0.66 to 3.48. The auxiliary gas flow rate was varied from 3.22 to 12.86$\ell$/min. The weight reduction, pH and particle size distribution of carbonized rice husk were measured to evaluate the quality of carbonized rice husk. An analysis of exhaust gas emission was conducted to characterize the combustor. The required carbonized rice husk could be obtained at equivalence ratio of 1.68~2.17, combustor temperature of 1,273~1,373K and auxiliary gas flow rate of 3.22~6.43$\ell$/min. A method to reduce CO emissions should be employed.

  • PDF