• Title/Summary/Keyword: von-mises

Search Result 694, Processing Time 0.025 seconds

Statistical Modeling Methods for Analyzing Human Gait Structure (휴먼 보행 동작 구조 분석을 위한 통계적 모델링 방법)

  • Sin, Bong Kee
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.12-22
    • /
    • 2012
  • Today we are witnessing an increasingly widespread use of cameras in our lives for video surveillance, robot vision, and mobile phones. This has led to a renewed interest in computer vision in general and an on-going boom in human activity recognition in particular. Although not particularly fancy per se, human gait is inarguably the most common and frequent action. Early on this decade there has been a passing interest in human gait recognition, but it soon declined before we came up with a systematic analysis and understanding of walking motion. This paper presents a set of DBN-based models for the analysis of human gait in sequence of increasing complexity and modeling power. The discussion centers around HMM-based statistical methods capable of modeling the variability and incompleteness of input video signals. Finally a novel idea of extending the discrete state Markov chain with a continuous density function is proposed in order to better characterize the gait direction. The proposed modeling framework allows us to recognize pedestrian up to 91.67% and to elegantly decode out two independent gait components of direction and posture through a sequence of experiments.

  • PDF

A two-short-implant-supported molar restoration in atrophic posterior maxilla: A finite element analysis

  • Song, Ho-Yong;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • PURPOSE. The aim of this study was to investigate the stress distribution of 2-short implants (2SIs) installed in a severely atrophic maxillary molar site. MATERIALS AND METHODS. Three different diameters of internal connection implants were modeled: narrow platform (NP), regular platform (RP), and wide platform (WP). The maxillary first molars were restored with one implant or two short implants. Three 2SI models (NP-oblique, NP-vertical, and NP-horizontal) and four single implant models (RP and WP in a centered or cantilevered position) were used. Axial and oblique loadings were applied on the occlusal surface of the crown. The von Mises stress values were measured at the bone-implant, peri-implant bone, and implant/abutment complex. RESULTS. The highest stress distribution at the bone-implant interface and the peri-implant bone was noticed in the RP group, and the lowest stress distribution was observed in the 2SI groups. Cantilevered position showed unfavorable stress distribution with axial loading. 2SI types did not affect the stress distribution in oblique loading. The number and installation positions of the implant, rather than the bone level, influenced the stress distribution of 2SIs. The implant/abutment complex of WP presented the highest stress concentration while that of 2SIs showed the lowest stress concentration. CONCLUSION. 2SIs may be useful for achieving stable stress distribution on the surrounding bone and implant-abutment complex in the atrophic posterior maxilla.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Stress Distribution following Rapid Maxillary Expansion using Different Finite Element Model according to Hounsfield Unit Value in CT Image (CT상의 HU 수치에 따른 유한요소모델을 이용한 RME 사용에 따른 응력분포에 대한 연구)

  • Yoon, Byung-Sun;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • With rising prevalency of mouth breathing children caused by developing civilization and increasing pollution, there are many maxillary transverse discrepancy patients with undergrowth of maxilla. For improving this, maxillary mid-palatal suture splitting was often performed. The purpose of this study was to analyse the stress distribution on the craniofacial suture and cranium after rapid maxillary expansion by finite element model. The boy(13Y6M) was chosen for taking computed-tomography for finite element model. Three-dimensional model of maxilla, first premolar, first molar, buccal and lingual part of rapid maxillary expansion were constructed. 1. The alveolar bone adjacent to the first molar and the first premolar that was affected directly by rapid maxillary expansion was displaced laterally approximately 4.04mm at maximum. The force decreased toward anterior region and frontal alveolar bone displaced laterally about 3.18mm. 2. A forward maximum displacement was exhibited at zygomatic process middle region. 3. At maximum, maxillary median part experienced 0.973mm downward repositioning and 0.65mm upward repositioning at lateral alveolar bone. 4. Von mises stress was observed the largest stress distribution around teeth and zygomatic buttress. 5. The largest tensile force was observed around alveolar bone of teeth, while compression force was observed at zygomatic buttress.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Self-consolidating concrete filled steel tube columns - Design equations for confinement and axial strength

  • Lachemi, M.;Hossain, K.M.A.;Lambros, V.B.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.541-562
    • /
    • 2006
  • This paper compares the performance of axially loaded concrete filled steel tube (CFST) columns cast using a conventionally vibrated normal concrete (NC) and a novel self-consolidating concrete (SCC) made with a new viscosity modifying admixture (VMA). A total of sixteen columns with a standard compressive strength of about 50 MPa for both SCC and NC were tested by applying concentric axial load through the concrete core. Columns were fabricated without and with longitudinal and hoop reinforcement (Series I and Series II, respectively) in addition to the tube confinement. The slenderness of the columns expressed as height to diameter ratio (H/D) ranged between 4.8 and 9.5 for Series CI and between 3.1 and 6.5 for Series CII. The strength and ductility of SCC columns were found comparable to those of their NC counterparts as the maximum strength enhancement in NC columns ranged between 1.1% and 7.5% only. No significant difference in strain development was found due to the presence of SCC or NC or due to the presence of longitudinal and hoop reinforcement. Biaxial stress development in the steel tube as per von Mises yield criterion showed similar characteristics for both SCC and NC columns. The confined strength ($f^{\prime}_{cc}$) of SCC was found to be lower than that of NC and $f^{\prime}_{cc}$ also decreased with the increase of slenderness of the columns. Analytical models for the prediction of confined concrete strength and axial strength of CFST columns were developed and their performance was validated through test results. The proposed models were found to predict the axial strength of CFST columns better than existing models and Code based design procedures.

Finite Element Analysis of Stress Distribution on Supporting Bone of Cement Retained Implant by Oblique Loading (경사하중에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분포)

  • Lee, Myung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.343-349
    • /
    • 2014
  • The dental osseointegration implant should be enough to endure occlusion load and it's required to have efficient design and use of implant to disperse the stress into bones properly. Solidworks as a finite element analysis program for modeling and analysis of stress distribution was used for the research. The simple crown model was designed on applying conjoined condition with tightening torque of 20 Ncm of a abutment screw between a cement retained implant abutment and a fixture. A $45^{\circ}$ oblique loading from lingual to buccal side on buccal cusps of crown and performed finite element analysis by 100 N of external load. The results by a analysis for stress distribution of supporting bones of fixture were as below. The von Mises stress was concentrated on the upper side of supporting compact bone regardless of the diameters and lengths of fixture, and the efficiency result of stress reduction was increase of fixture's diameter than it's length. Therefore, it's effective to use wider fixture as possible to the conditions of supporting jaw bone.

STRESS ANALYSIS ON THE DIFFERENT CLASPS OF THE REMOVABLE PARTIAL DENTURE BY THREE-DIMENSIONAL FINITE ELEMENT METHOD (삼차원 유한 요소법에 의한 가철성 국소의치 클래스프의 응력 분석)

  • Park Hong-Ryul;Kim Seong-Kyun;Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.218-231
    • /
    • 2005
  • Statement of problem. In the partially edentulous patients, removable partial dentures have been working as a important treatment modality. Clasps, a kind of direct retainers, received some amount of stresses during the insertion and removal of partial denture on the abutment tooth. Purpose. The study is to investigate stresses of the different clasps. Material and methods. In order to investigate the degree of stresses, maxillary partial edentulism (Kennedy Class II modification I) was assumed and removable partial dentures were designed on it with three kinds of metallic materials; cobalt-chromium alloy, type IV gold alloy and commercially pure (c.p.) titanium. Aker's clasp was applied on the left second molar. RPA (mesial rest-proximal plate-Aker's) clasp was on the left first premolar and wrought wire clasp was on the right first premolar. Three dimensional, non-linear, dynamic finite element analysis method was run to solve this process. Results. 1. Cobalt-chromium alloy had the highest von Mises stress value and c.p. titanium had the lowest one irrespective of the types of clasps. 2. In the Aker's clasps, stress on the retentive tips was shown shortly after the appearance of stresses of the middle and minor connector areas. These time lag was much shorter in the RPA clasps than in the Aker's clasp. 3. In general. retentive tips of wrought wire clasps had much less amount of stress than other clasps. Conclusion. The amount of stress was the highest in the RPA clasp and the lowest in the wrought wire clasp, in general.

Stress analysis according to the different angulation of the implant fixture (임플란트 고정체의 매식 경사에 따른 응력분석)

  • Lee, Tae-Yup;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Bending moments results from offset overloading of dental implant, which may cause stress concentrations to exceed the physiological capacity of cortical bone and lead to various kinds of mechanical failures. The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different angulated placement of dental implant in mandibular posterior missing areas. The three kinds of finite element model, were designed according to 3 main configurations: Model 1(parallel typed placement of 2 fixtures), Model 2(15. distal angulated placement of one fixture on second molar area), Model 3(15. mesial angulated placement of one fixture on second molar area). The cemented crowns for mandibular first and second molars were made on the two fixtures (4mm 11.5). Three-dimensional finite element models by two fixtures were constructed with the components of the implant and surrounding bone. A 200N vertical static load were applied to the center of central fossa and the point 2mm apart from the center of central fossa on each model. The preprocessing, solving and postprocessing procedures were done by using FEM analysis software NISA/DISPLAY IV Version 10.0((Engineering Mechanics Research Corporation, USA). Von Mises stresses were evaluated and compared in the supporting bone, fixtures, and abutment. The results were as following : (1) Under the point loading at the central fossa, the direction of angulated fixture affected the stress pattern of implants. (2) Under the offset loading, the position of loading affected more on the stress concentration of implants compare to the angulated direction of implants. The results had a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the placement angulation of implant fixture is placed toward mesial or distal direction. In designing of the occlusal scheme for angulated placement, placing the occlusal contacts axially during chewing appears to have advantages in a biomechanical viewpoint.