• Title/Summary/Keyword: von-Mises equivalent stress

Search Result 72, Processing Time 0.019 seconds

High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame (동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ick;Kim, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.

A Coarse Mesh Model for Numerical Analysis of Lead Frame Deformation Due to Blanking Residual Stress (블랭킹 잔류응력에 의한 리드프레임 변형 수치해석을 위한 대격자 모델)

  • Kim Yong Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2005
  • The deformation of sheet metal due to the residual stress during blanking or piercing process, is numerically simulated by means of a commercial finite element code. Two dimensional plain strain problem is solved and then its result is applied to the deformation analysis of the lead frame. The plain strain element is applied to the 2D problem to observe the Von Mises equivalent stress concentration at the both shearing edges. As the punch penetrates into the sheet material, the stress concentration generated on both edges is getting increased to be the shearing surface. The limits of the punching depth applied to the simulation is 16% and 24% of the sheet thickness for the plain strain element and the hexahedral element, respectively. The hexahedral element and the limit of punching depth were applied to the deformation analysis of the lead frame for the blanking process. The FEM results for the lead deformation were very good agreement with the experimental ones. This paper shows that the coarse mesh has enabled to analyze the lead deformation generated due to the blanking mechanism. This simple approach to save the calculation time will be very effective to the design of the blanking tools in industries.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

Sensitivity Analysis to Finite Element Analysis Program to Evaluate Structural Integrity of a Spent Nuclear Fuel Transport Cask Subjected to Extreme Impact Loads (극한 충격하중이 작용하는 사용후핵연료 운반용기의 구조 건전성을 평가하는 유한요소해석 프로그램에 대한 민감도 분석)

  • Jong-Sung Kim;Min-Sik Cha
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.50-53
    • /
    • 2022
  • To investigate the validity of the finite element analysis program to assess structural integrity of a spent nuclear fuel transport cask subjected to extreme impact loads, structural integrity of the cask for the case of an aircraft engine collision is evaluated using three FE analysis programs: Autodyn, Speed and ABAQUS explicit version. As a result of all analyses, it is confirmed that no penetration occurred in the cask wall. Even though the different programs are used, it is identified that there are insignificant differences in the FE analysis variables such as von Mises effective stress and equivalent plastic strain among the programs.

Light-Weight Design of Automotive Torque Strut Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 Torque Strut의 경량 설계)

  • Kim, Kee Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.975-981
    • /
    • 2017
  • Savings in weight using lightweight materials such as aluminum alloy can lead to increase fuel economy. However, compared to steel, aluminum alloys have a lower strength for an equivalent life cycle. To reduce the weight of automobiles, research is being performed on the fabrication of lighter and stronger torque struts without having to sacrifice the safety of automotive components. In this study, a weight reduction design process for torque struts is proposed that is based on varying von-Mises stress contours using an aluminum alloy (A356) having a tensile strength of 245 MPa, instead of STKM11A steels. The optimized design can reduce the weight of the original steel torque strut by over 42% and it can contribute to the design of light-weight components and to the safe design of torque struts.

Fatigue Analysis of External Fuel Tank and Pylon for Fixed Wing Aircraft (고정익항공기용 외부연료탱크 및 파일런 피로 해석)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.162-167
    • /
    • 2020
  • In this study, a fatigue analysis of an external fuel tank and pylon for fixed-wing aircraft was carried out as part of the domestic development of fixed-wing aircraft. Through structural analysis, the analysis areas were selected, and the transfer function for unit loads was established in the selected parts. For each of the continuous load profiles, stress components in the selected areas were calculated using the load of each profile and the transfer function, and the Von Mises equivalent stress was employed as the representative stress of each profile. In addition, the rainflow counting technique was used to extract individual profiles obtained from the initial large load profiles and to calculate their amplitude and average values. For life evaluation, the S-N diagram of the Metallic Materials Properties Development and Standardization (MMPDS) was applied, and the damage value was calculated by Miner's rule to assess the life of the selected area. As a result of the life assessment, the life span requirement for the selected area of the external fuel tank and the pylon was assessed as being satisfied.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Structural Durability Analysis According to the Thickness of Bicycle Frame Tube (자전거 프레임 튜브 두께에 따른 구조적 내구성 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.122-129
    • /
    • 2012
  • This study investigates structural and vibration analyses according to the thickness of bicycle frame tube. The model of bicycle frame has the dimension as length of 862mm, width of 100mm and hight of 402.5mm. There are 3 kinds of models with tubes of top, down and seat at bicycle frame as thicknesses of 10, 15 and 20mm. The maximum displacement and stress occur at the center part of seat stay and at the installation part of rear wheel respectively. Maximum displacements become 0.031936, 0.029159 and 0.027984mm in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 20mm among 3 cases, maximum displacement becomes lowest. But maximum stresses become 10.019, 8.5492 and 9.2511MPa in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 15mm among 3 cases, maximum stress becomes lowest. There is no resonance at practical driving conditions and natural frequency remains almost unchanged along the change of thickness. In case of the displacement due to vibration mode, the displacement difference at thickness between 15mm and 20mm becomes 1/2 times than that between 10mm and 15mm. Design at bicycle frame tube becomes most economical and durable effectively in case of thickness of 15mm among 3 cases.

Fatigue Life Estimation Using the Multi-Axial Multi-Point Load Counting Method under Variable Amplitude Loading (가변진폭하중하에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • Lee, W.S.;Lee, H.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.22-27
    • /
    • 1997
  • In general, the load which acts on the structure is almost independent of time in many locations. In this case. It is difficult to estimate the life with the service load history, because the structure is on the multi- axial and multi-point loading states. In this study, the service load of the excavator which is widely used in industry field was calculated using measured cylinder pressures and displacements. The fatigue life was estimated using the multi-axial and multi-point load counting method. Service load history of 4 pin joint which act independently each other is yielded by mult-axial and multi-point load counting method. The stress spectrum is yielded by superposition of the results of FEM stress analysis applied unit load. Palm- gren-Miner's cumulative Damage is 0.000804 for Von Mises equivalent stress sequence by one side fillet weld S-N curve. This result agress with Bench test results. As a result of this study, the fatigue life esti- mation using the multi-axial and multi-axial and multi-point load counting method is useful.

  • PDF

Development of Atomization Spraying System for Solvent-free Paints(II) - Structural Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(II) - 유압 엑츄에이터의 구조해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Solvent-free paint is sprayed from higher-pressure conditions, because the viscosity is large. The hydraulic actuator which can be operated under higher-pressure condition is required to spray solvent-free paints in painting process for the environmental protection. The purpose of this paper is to develop the hydraulic actuator under higher-pressure conditions for solvent-free paint spraying system. The hydraulic actuator consists of inner spool, outer spool and ball. The analysis of a structural stability was conducted by using ANSYS V11 under the design condition of upward and downward movement of spool. As a result, the maximum von-Mises stress applied on spool under 4mm displacement showed a value of 106MPa which was greater than the allowable stress of the spool with a value of 250MPa and a value of safety factor 3. This result suggested that the spool system be unstable under the design condition so that it was necessary for the spool system to be reinforced to secure the structural stability.