DOI QR코드

DOI QR Code

Light-Weight Design of Automotive Torque Strut Based on Computer Aided Engineering

컴퓨터 시뮬레이션을 이용한 자동차용 Torque Strut의 경량 설계

  • Kim, Kee Joo (Dept. of Mechatronics Engineering, Tongmyung Univ.)
  • 김기주 (동명대학교 메카트로닉스공학과)
  • Received : 2017.01.05
  • Accepted : 2017.07.25
  • Published : 2017.10.01

Abstract

Savings in weight using lightweight materials such as aluminum alloy can lead to increase fuel economy. However, compared to steel, aluminum alloys have a lower strength for an equivalent life cycle. To reduce the weight of automobiles, research is being performed on the fabrication of lighter and stronger torque struts without having to sacrifice the safety of automotive components. In this study, a weight reduction design process for torque struts is proposed that is based on varying von-Mises stress contours using an aluminum alloy (A356) having a tensile strength of 245 MPa, instead of STKM11A steels. The optimized design can reduce the weight of the original steel torque strut by over 42% and it can contribute to the design of light-weight components and to the safe design of torque struts.

알루미늄 합금과 같은 경량소재의 적용을 통한 무게 감소는 연료절감과 대기 오염 감소에 기여할 수 있다. 알루미늄 합금 재료는 피로수명에 대한 강도 측면에서 철강(steel) 소재에 비하여 취약한 단점을 가지고 있다. 부품들의 안전성을 희생시키지 않고 자동차 부품 경량화를 이루기 위해 많은 연구자들이 보다 가볍고 강한 서스펜션 링크들에 관한 연구를 진행해 왔다. 본 연구에서는 기존 STKM11A 철강소재로 설계된 토크 스트럿을 245 MPa의 인장강도 소재인 알루미늄 합금(A356) 소재로 대체하기 위한 경량화 설계 과정에 대하여 von-Mises 응력 변화를 분석하여 연구하였다. 최적화된 설계는 경량화 이전 강재로 설계된 링크보다 42% 이상 경량화 시킬 수 있었으며 이는 토크 스트럿 개발의 안전한 경량화 설계조건 및 경량화 설계에 대한 가이드에 참고가 될 수 있을 것이다.

Keywords

References

  1. Park, J.-H. and Kim, K. J., 2013, "Optimal Design of Camber Link Component for Light Weight Automobile Using CAE (Computer Aided Engineering)," International J. of Precision Engineering and Manufacturing, Vol. 14, No. 8, pp. 1433-1437. https://doi.org/10.1007/s12541-013-0193-9
  2. Park, J. H., Kim, K. J., Lee, J. W. and Yoon, J. K., 2015, "Light-Weight Design of Automotive Suspension Link Based on Design of Experiment," International J. of Automotive Technology, Vol. 16, No. 1, pp. 67-71. https://doi.org/10.1007/s12239-015-0007-4
  3. Park, J.-H., Kim, K. J. and Yoon, J.-G., 2013, "Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering," Transaction of KSAE, Vol. 21, No. 5, pp. 157-161.
  4. Park, J.-H. and Kim, K. J., 2017, "Light- Weight Design of Automotive Tension Link Based on Computer Aided Engineering," Transaction of Korean Soc. Mech. A, to be published.
  5. Wu, S., Tang, Z. and Guo, Z., 2017, "Lightweight Mixture Faults Detection Method for Gasoline Engine Using on-Line Trend Analysis," Int. J. of Auto. Tech., Vol. 18, No. 3, pp. 365-375. https://doi.org/10.1007/s12239-017-0037-1
  6. Kwan, T., 2016, "Aluminum Alloy and Heat- Treated for Optimizing the Development of Lightweight Automobile Steering Components," KSAE 2016 Annual Conference, pp. 579-581.
  7. Kim, C.-J., Kang, Y. J., Lee, B.-H. and Ahn, H.-J., 2012, "Senditiviey Analysis for Reducing Critical Responses at the Axle Shaft of a Lightweight Vehicle," Int. J. of Auto. Tech., Vol. 13, No. 3, pp. 451-458. https://doi.org/10.1007/s12239-012-0042-3
  8. Kim, W., Kim, I., Jeong, J. and Heo, S.-J., 2009, "Lightweight Design of Convertible Vehicle Trunk," KSAE 2009 Annual Conference, pp. 1154-1158.