• Title/Summary/Keyword: von Mises stress

Search Result 532, Processing Time 0.022 seconds

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

Stress and Modal Analysis for the Rotor System of a Medical Centrifuge using Finite Element Method (유한요소법을 이용한 의료용 원심분리기 로터의 응력 및 고유치 해석)

  • Kim, Sung-Min;Yang, In-Chul;Kim, Do-Gyoon;Kim, Hak-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.78-85
    • /
    • 2007
  • In this study, we performed finite element analysis for the design of a medical centrifuge and two-types of centrifuge were compared with each other. The types of centrifuge are 2-arm straight type and 3-arm type. Structural analysis was done with respect to the change of the rotational speed of the rotor of a centrifuge. When the rotor of centrifuge was rotated, the von Mises stress of 2-arm straight type-rotor was compared with the von Mises stress of 3-arm type. The margin of safety was estimated from the result. We found the critical speed of centrifuge from the campbell diagram by modal analysis.

Characteristics of EHV Bushing and a New Design for the Improved Performance (특고압 부싱의 특성분석 및 성능향상을 위한 새로운 설계)

  • Kim, Chan-Young;Song, Il-Keun;Kim, Ju-Yong;Lee, Byung-Sung;Park, Keun-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.886-889
    • /
    • 2002
  • This paper describes the characteristic analyses and a new design of the bushing for the pole transformers. The mechanical breakdown of the upper part of the bushing was frequently occurred. This caused the leakage of mineral oil, resulted in the interruption of electric power. Therefore, the bushings were investigated by the material analytical method and Finite Element Method. The analyses were performed by the Induced Coupled Plasma(ICP), X-ray diffraction(XRD), Scanning Electron Microscopy(SEM), and Dielectric Thermal Analyzer(DETA). Also, the Von-Mises stress of the top part of bushing was determined by using ANSYS program. The Von-Mises stress of the newly designed bushing was reduced about 50%. Therefore, if we apply the newly designed bushing, the number of mechanical breakdown may be decreased.

  • PDF

압축하중을 받는 단순 코일 스프링에 관한 해석 결과 및 분석

  • Yun, Jong-Seon;Lee, Nam-Ju
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.263-265
    • /
    • 2015
  • In this paper, a coil spring of the suspension components of the car is calculated through FEM(Finite Element Method) when a portion of the one is applied by an external load. we analyze the situation by using 'Large Deformation Analysis SW' in the EDISON structural dynamics server. Results of the analysis are about a displacement of the upper spring after deformation and total mass, and we use them to calculate the spring constant and maximum von-Mises stress by using Hooke's law and von-Mises stress equation. Finally, we visualize the relationship between the calculated spring constant and the mass through graphs and this data are beneficial for industries related to the spring.

  • PDF

Fatigue Analysis of Spot Welded Joints in Suspension Mounting Part

  • Yum, Youung-Jin;Chu, Young-Woo;Chu, Seok-Jae;Kim, Jung-Han;Hee You
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1113-1119
    • /
    • 2003
  • Experimental and numerical analyses were performed to characterize the fatigue behavior of spot welded joints in suspension mounting of a passenger car body. Static and fatigue tests were carried out for the tensile-shear and cross-tension specimens. S-N curve and fatigue strengths were obtained from the fatigue test of various specimens. Nonlinear finite element analysis showed that fatigue behavior of spot welded joints could be well estimated in terms of Von Mises stress at the nugget edge. Fatigue behavior of spot welded joint was represented by Von Mises stress better than the fatigue load.

The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions (임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석)

  • Jeung, Sin-Young;Kim, Chang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.

Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone (산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석)

  • Ki-Hong Kim;Dae-Won Bae;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

A three-dimensional finite element analysis of obturator prosthesis for edentulous maxilla (무치악 구개결손 환자를 위한 폐쇄장치의 삼차원 유한요소 분석)

  • Song, Woo-Seok;Kim, Myung-Joo;Lim, Young-Jun;Kwon, Ho-Beom
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Purpose: The purposes of this study were to evaluate the stress distributions and the displacements of obturator for edentulous maxillectomy patients and to compare them with those of complete denture using three-dimensional finite element analysis. Materials and methods: Based on the CT image of edentulous patient, three-dimensional finite element model of edentulous maxillae was constructed. Three-dimensional finite element model of edentulous maxillae with palatal defect was also fabricated. On each model, complete denture and obturator prosthesis were created. Vertical static force of 200 N was applied on the left maxillary premolar and molar region. The von Mises stress values and the displacements of models were analyzed using three-dimensional finite element analysis. Results: Maximum von Mises stress values were recorded in the cortical bones of both models. The von Mises stress value in the complete denture model was 2.73 MPa and 2.69 MPa in the obturator model. High von Mises stress values were also observed on the tissue surface of prosthesis. The maximum value of the displacement in the obturator was higher than that of complete denture. Conclusion: The obturator showed a worse result in terms of stress distribution and displacement than complete denture. In the prosthodontic rehabilitation of edentulous maxillectomy patient accurate impression procedure based on patients'anatomy and application of prosthodontic principle should be considered.