• Title/Summary/Keyword: von Mises distribution

Search Result 242, Processing Time 0.029 seconds

Modelling Missing Traffic Volume Data using Circular Probability Distribution (순환확률분포를 이용한 교통량 결측자료 보정 모형)

  • Kim, Hyeon-Seok;Im, Gang-Won;Lee, Yeong-In;Nam, Du-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.109-121
    • /
    • 2007
  • In this study, an imputation model using circular probability distribution was developed in order to overcome problems of missing data from a traffic survey. The existing ad-hoc or heuristic, model-based and algorithm-based imputation techniques were reviewed through previous studies, and then their limitations for imputing missing traffic volume data were revealed. The statistical computing language 'R' was employed for model construction, and a mixture of von Mises probability distribution, which is classified as symmetric, and unimodal circular probability were finally fitted on the basis of traffic volume data at survey stations in urban and rural areas, respectively. The circular probability distribution model largely proved to outperform a dummy variable regression model in regards to various evaluation conditions. It turned out that circular probability distribution models depict circularity of hourly volumes well and are very cost-effective and robust to changes in missing mechanisms.

Goodness-of-fit test for the gumbel distribution based on the generalized Lorenz curve (일반화된 로렌츠 곡선을 기반으로 한 Gumbel 분포의 적합도 검정)

  • Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.733-742
    • /
    • 2017
  • There are many areas of applications where Gumbel distribution are employed such as environmental sciences, system reliability and hydrology. The goodness-of-fit test for Gumbel distribution is very important in environmental sciences, system reliability and hydrology data analysis. Therefore, we propose the two test statistics to test goodness-of-fit for the Gumbel distribution based on the generalized Lorenz curve. We compare the new test statistic with the Anderson - Darling test, Cramer - vonMises test, and modified Anderson - Darling test in terms of the power of the test through by Monte Carlo method. As a result, the new test statistics are more powerful than the other test statistics. Also, we propose new graphic method to goodness-of-fit test for the Gumbel distribution based on the generalized Lorenz curve.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Finite Element Analysis of Stress Distribution around Patterned Implants

  • Cho, Lee-Ra;Huh, Yoon-Hyuk;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effect of patterning on the stress distribution in the bone tissue using the finite element analysis (FEA) model. Materials and Methods: For optimal comparison, it was assumed that the implant was axisymmetric and infinitely long. The implant was assumed to be completely embedded in the infinitely long cortical bone and to have 100% bone apposition. The implant-bone interface had completely fixed boundary conditions and received an infinitely big axial load. von Mises stress and maximal principal stress were analyzed. Conventional thread and 2 or 3 patterns on the upper and lower flank of the thread were compared. Result: The surface areas of patterned implants were increased up to 106~115%. The thread with patterns distributed stress better than conventional thread. Patterning in threads may produce more stress in the implant itself, but reduce stress in the surrounding bone. Stress patterns of von Mises stress were favorable with patterns, while the maximal principal stress was increased with patterns. Patterns in the lower flank showed favorable stress distribution. Conclusion: The patterns in implant thread reduce the stress generated in surrounding bone, but the number and position of patterns were crucial factors in stress distribution.

Finite Element Stress Analysis of the Implant Fixture According to the Thread Configuration and the Loading Condition (임플란트 고정체의 나사산 형태와 하중조건에 따른 응력분석)

  • Ahn, Ouk-Ju;Jeong, Jai-Ok;Kim, Chang-Hyun;Kang, Dong Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.153-167
    • /
    • 2005
  • The purpose of this study was to compare the v-shape thread with the square shape thread of fixture in the view of stress distribution pattern using finite element stress analysis. The finite element model was designed with the parallel placement of two standard fixtures(4.0 mm diameter ${\times}$ 11.5 mm length) on the region of mandibular 1st and 2nd molars. Three dimensional finite element model was created with the components of the implant and surrounding bone. This study simulated loads of 200 N at the central fossa in a axial direction (load A), 200 N at the buccal offset load that is 2 mm apart from central fossa in a axial direction (load B), 200 N at the buccal offset load that was 4 mm apart from central fossa in a axial direction (load C). These forces of load A',B',C' were applied to a $15^{\circ}$ inward oblique direction at that same site with 200 N. Von Mises stress values were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study : 1. The highest stress concentration occurred at the cervical region of the implant fixture. 2. Von Mises stress value of off-site region was higher than that of central fossa region. 3. Square shape thread type showed more even stress distribution in the vertical and oblique force than V-shape thread type. 4. Stress distribution was the most effective in the case of buccal offset load (2, 4 mm distance from central fossa) in the square shape thread type. 5. V-shape thread type revealed higher von Mises stress value than square shape thread type in all environmental condition. The results from numerical analyses concluded that square shape thread type had the lower destructive stress and more stress distribution between the fixture and bone interface than V-shape thread type. Therefore, square shape thread type was regarded as optimal thread configuration in biomechanical concepts.

Stress Analysis on the Supporting Bone around the Implant According to the Vertical Bone Level (치조골 높이가 다른 임프란트 주위 지지골 응력분석)

  • Boo, Soo-Boong;Jeung, Jei-Ok;Lee, Seung-Hoon;Kim, Chang-Hyun;Lee, Seung-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • The purpose of this study was to analyze the distribution of stress in the surrounding bone around implant placed in the first and second molar region. Two different three-dimensional finite element model were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$) on the second molar region. A mandibular segment containing two implant-abutments and a two-unit bridge system was molded as a cancellous core surrounded by a 2mm cortical layer. The mesial and distal section planes of the model were not covered by cortical bone and were constrained in all directions at the nodes. Two vertical loads and oblique loads of 200 N were applied at the center of occlusal surface (load A) or at a position of 2mm apart buccally from the center (load B). Von-Mises stresses were analyzed in the supporting bone. The results were as follows; 1. With the vertical load at the center of occlusal surface, the stress pattern on the cortical and cancellous bones around the implant on model 1 and 2 was changed, while the stress pattern on the cancellous bone with oblique load was not. 2. With the vertical load at the center of occlusal surface, the maximum von-Mises stress appeared in the outer distal side of the cortical bone on Model 1 and 2, while the maximum von-Mises stress appeared in the distal and lingual distal side of the cortical bone with oblique load. 3. With the vertical load at a position of 2 mm apart buccally from the center, there was the distribution of stress on the upper portion of the implant-bone interface and the cortical bone except for the cancellous bone, while there was a distribution of stress on the cancellous bones at the apical and lingual sides around the fixture and on the cortical bone with oblique load. 4. With the changes of the supporting bone on the second molar area, the stress pattern on the upper part of the cortical bone between two implants was changed, while the stress pattern on the cancellous bone was not. The results of this study suggest that establishing the optimum occlusal contact considering the direction and position of the load from the standpoint of stress distribution of surrounding bone will be clinically useful.

Effect of Material Property Uncertainty on Warpage during Fan Out Wafer-Level Packaging Process (팬아웃 웨이퍼 레벨 패키지 공정 중 재료 물성의 불확실성이 휨 현상에 미치는 영향)

  • Kim, Geumtaek;Kang, Gihoon;Kwon, Daeil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • With shrinking form factor and improving performance of electronic packages, high input/output (I/O) density is considered as an important factor. Fan out wafer-level packaging (FO-WLP) has been paid great attention as an alternative. However, FO-WLP is vulnerable to warpage during its manufacturing process. Minimizing warpage is essential for controlling production yield, and in turn, package reliability. While many studies investigated the effect of process and design parameters on warpage using finite element analysis, they did not take uncertainty into consideration. As parameters, including material properties, chip positions, have uncertainty from the point of manufacturing view, the uncertainty should be considered to reduce the gap between the results from the field and the finite element analysis. This paper focuses on the effect of uncertainty of Young's modulus of chip on fan-out wafer level packaging warpage using finite element analysis. It is assumed that Young's modulus of each chip follows the normal distribution. Simulation results show that the uncertainty of Young's modulus affects the maximum von Mises stress. As a result, it is necessary to control the uncertainty of Young's modulus of silicon chip since the maximum von Mises stress is a parameter related to the package reliability.

Nonparametric homogeneity tests of two distributions for credit rating model validation (신용평가모형에서 두 분포함수의 동일성 검정을 위한 비모수적인 검정방법)

  • Hong, Chong-Sun;Kim, Ji-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.261-272
    • /
    • 2009
  • Kolmogorov-Smirnov (K-S) statistic has been widely used for testing homogeneity of two distributions in the credit rating models. Joseph (2005) used K-S statistic to obtain validation criteria which is most well-known. There are other homogeneity test statistics such as the Cramer-von Mises, Anderson-Darling, and Watson statistics. In this paper, these statistics are introduced and applied to obtain criterion of these statistics by extending Joseph (2005)'s work. Another set of alternative criterion is suggested according to various sample sizes, type a error rates, and the ratios of bads and goods by using the simulated data under the similar situation as real credit rating data. We compare and explore among Joseph's criteria and two sets of the proposed criterion and discuss their applications.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.