• Title/Summary/Keyword: von Karman strain

Search Result 79, Processing Time 0.022 seconds

On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.261-275
    • /
    • 2019
  • The main objective of this paper is to study the axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets (GSs) under in-plane loading in the theoretical framework of the nonlocal strain gradient theory. To begin with, a graphene sheet is modeled by a two-dimensional plate subjected to simply supported ends, and supposed to have a small initial curvature. Then according to the Hamilton's principle, the nonlinear governing equations are derived with the aid of the classical plate theory and the von-karman nonlinearity theory. Subsequently, for providing a more accurate physical assessment with respect to the influence of respective parameters on the mechanical performances, the approximate analytical solutions are acquired via using a two-step perturbation method. Finally, the authors perform a detailed parametric study based on the solutions, including geometric imperfection, nonlocal parameters, strain gradient parameters and wave mode numbers, and then reaching a significant conclusion that both the size-dependent effect and a geometrical imperfection can't be ignored in analyzing GSs.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

THERMAL POSTBUCKLING CHARACTERISTICS OF STEP-FORMED FG PANELS WITH TEMPERATURE-DEPENDENT MATERIAL IN SUPERSONIC FLOW

  • Lee, Sang-Lae;Kim, Ji-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.566-571
    • /
    • 2007
  • In this study, it is investigated the thermal post-buckling characteristics of step-formed FG panel under the heat and supersonic flow. Material properties are assumed to be temperature dependent as well as continuously varying in the thickness direction of the panel according to a simple power law distribution in terms of the volume fraction of the constituent. First-order shear deformation theory(FSDT) of plate is applied to model the panel, and the von Karman strain-displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Also, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel. Numerical results are summarized to reveal the thermal post-buckling behaviors of FG panels with various volume fractions, temperature conditions and aerodynamic pressures in detail.

  • PDF

Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity (비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석)

  • 정진태;정두한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Self-excited Vibration Characteristics of Cylindrical Composit Shell subject to Thermal Stresses in Supersonic Flow (초음속 유동에서 열응력을 받는 원통형 복합적층 쉘의 자려진동 특성)

  • Oh, Il-Kwon;Lee, In;Koo, Kyo-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.897-903
    • /
    • 2001
  • The supersonic flutter analysis of cylindrical composite panels subject to thermal stresses has been performed using layerwise nonlinear finite elements. The geometric nonlinear finite elements of cylindrical shells are formulated using hamilton's principle with von Karman strain-displacement relationship. Hans Krumhaar's modified supersonic piston theory is appled to calculate aerodynamic loads for the panel flutter analysis. The present results show that the critical dynamic pressure of cylindrical panels under compressive thermal stresses can be dramatically reduced. The margin of aerothermoelastic stability considering thermal and aerodynamic coupling should be verified in the structural design of launch vehicles and high speed aircrafts.

  • PDF

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

Vibration of an Axially Moving String Coupled between Longitudinal and Transverse Deflections (종방향과 횡방향 변위가 연성된 축방향으로 움직이는 현의 진동)

  • Chung, J.T.;Shin, C.H.;Han, C.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.731-736
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are investigated by using the generalized-${\alpha}$ method.

  • PDF