• Title/Summary/Keyword: volumetric productivity

Search Result 69, Processing Time 0.029 seconds

Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40

  • Ha, Sanghyun;Lee, Keon Jin;Lee, Sang Il;Gwak, Hyun Jung;Lee, Jong-Hee;Kim, Tae-Woon;Choi, Hak-Jong;Jang, Ja-Young;Choi, Jung-Sub;Kim, Chang-Jin;Kim, Jin-Cheol;Kim, Hyeong Hwan;Park, Hae Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.947-955
    • /
    • 2017
  • Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to $180{\mu}m$, high volumetric production of herbicidin A was obtained with OUR values >137mg $O_2/l{\cdot}h$. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of $100-200{\mu}m$ length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.

Research Trends in Off-Site Construction Management : Review of Literature at the Operation Level (국외 오프사이트 건설 관리 연구 동향 : 작업 단계 수준에서의 문헌 연구)

  • Jang, JunYoung;Chen, Hao;Lee, Chansik;Kim, TaeWan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.114-125
    • /
    • 2019
  • Off-Site Construction (OSC) is a new construction method based on factory production. OSC (Off-Site Construction) is a new construction method based on factory production. Researches such as OSC-related design and production standardization, transport methods are actively conducted in the U.S., UK and other parts of the world as this new method has an edge over existing methods in terms of productivity, economy and quality. As the emergence of this new area requires reasonable management, an analysis of the scope of construction project management is required accordingly. Therefore, this research analyzed the study trends and relationships at the CM/PM range's "Operation level" to identify areas of study, relationship between studies and deficiencies in current research. This study carried out a comprehensive literature review of the OSC (CM/PM) research by analyzing 94 papers in Operation level as of September 3, 2018, and the analysis results are as follows. (1) Working stage level researches have been increasing rapidly since 2006. (2) Non-volumetric type is contributing most significantly at work stage level. In the building sector, it has been identified that problems such as residential: living, quality issues, non-residential: economic difficulties, factory: productivity problems have been addressed. (4) The Non-volumetric pre-assembly type dealt with the economic feasibility of residential and non-residential buildings, whereas the modular type was studied in regards to assembly quality. (5) From 2006, project management areas (e.g., quality, human resources, risks) have been expanded. It is expected that this research will help find new areas of research for OSC. If the analysis is carried out to the level of the industrial, corporate and project phases in the future, it is deemed that the overall research flow and area of the OSC industry can be identified.

Ethanol Production from Tapioca Hydrolysate by Batch and Continuous Cell Retention Cultures (회분 및 연속세포유지 배양에 의한 타피오카당화액으로부터의 에탄올생산)

  • 이용석;이우기
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.598-603
    • /
    • 1995
  • Batch and continuous cell retention cultures were carried out using tapioca hydrolysate. In batch culture, reducing sugar of about 180g/$\ell$ was almost consumed in about 36 hours, and the concentration of ethanol produced was about 84g/$\ell$ making the ethanol yield 0.48 g-ethanol/g-(reducing sugar). The final yeast concentration was 8.5${\times}$107 cells/ml(about 2.1g/$\ell$). In a total cell retention culture operated with a dilution rate of 0.18h-1, the yeast concentration, the residual reducing sugar concentration, the ethanol concentration, and the volumetric ethanol productivity were about 40g/$\ell$, about 15g/$\ell$, 81.4g/$\ell$, and 14.7g/$\ell$-h, respectively. In another cell retention culture operated with a dilution rate and a bleed ratio of 0.2h-1 and 0.14, respectively, the yeast concentration increased to 22g/$\ell$ and the ethanol concentration oscillated around 68g/$\ell$. The volumetric ethanol productivity was about 13.6g/$\ell$-h and the residual reducing sugar concentration about 12g/$\ell$ containing glucose of about 4.5g/$\ell$. According to the results of batch fermentation using the solid residue from hydrolysate filtration as the substrate, it seemed to have a certain value. Thus, development of an effective reactor system to produce ethanol from this solid residue is in need.

  • PDF

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

Optimization of industrial medium for the production of erythritol by candida magnoliae

  • Kim, Seung-Bum;Park, Sun-Young;Seo, Jin-Ho;Ryu, Yeon-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.268-272
    • /
    • 2003
  • Experiments were carried out to investigate the selection of industrial medium and optimization of fermentation process for the production of erythritol by Candida magnoliae SR101. In the batch fermentation, light steep water(LSW) was the best nitrogen source for the industrial production of erythritol. For the optimization of culture condition, the batch culture was performed. When the concentration of LSW was 65 mL/L in the defined medium containing 250 g/L of glucose, 44% of erythritol yield with 110 g/L of erythritol concentration and 0.66 g/L-hr of productivity, respectively were obtained. Two-stage fed-batch culture was performed to improve the volumetric productivity of erythritol. High density cell culture in the growth stage was performed by batch type with 100 g/L glucose and 500 mL/L LSW concentration, respectively. The cell yield was 0.72 g-cell/g-glucose. Productivity of erythritol was increased and concentration of organic acids such as gluconic acid and acetic acid were decreased when initial pH of 6.5 controlled by 28% ammonia water For increasing yield of erythritol, glucose concentration in the production stage was tested. 37% of total erythritol yield with 186 g/L of erythritol concentration and 1.66 g/L-hr of erythritol productivity were obtained when 820 g of glucose powder was directly added for making up 450 g/L of glucose at production stage.

  • PDF

Two-Stage Fed-Batch Culture of Candida magnoliae for the Production of Erythritol using an Industrial Medium (산업용 배지를 이용한 Candida magnoliae의 2단계 유가식 배양에서 에리스리톨의 생산)

  • 박선영;서진호;유연우
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2003
  • Experiments were carried out to select an industrial nitrogen source and optimize erythritol production by Candida magnoliae in fed-batch culture. Among the industrial nitrogen sources tested, light steep water (LSW) was found to be the best nitrogen source for producing erythritol, based on erythritol yield and raw material price. The maximum erythritol concentration obtained a 131.6 g/L, with a 52.6% yield and 0.52 g/L-hr productivity from a 250 g/L glucose and 43.3 mL/L LSW in batch culture. Two-stage fed-batch culture was chosen to improve the volumetric productivity and the yield of erythritol. High cell density culture in cell growth stage was achieved by batch type culture containing 100 g/L glucose and 500 mL/L LSW. The cell concentration was 71.0 g/L after 23 hours of culture. Erythritol productivity was decreased by increasing glucose concentration in the production stage. But 37.3% of the maximum erythritol yield was obtained with 185.5 g/L of erythritol and 1.66 g/L-hr of productivity when 820 g of glucose powder was directly added to a concentration of 450 g/L glucose in production stage.

Optimum design of injection molding cooling system via boundary element method (경계요소법을 이용한 사출성형금형 냉각시스템의 최적설계)

  • Park, Seong-Jin;Kwon, Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1773-1785
    • /
    • 1997
  • The cooling stage is the very critical and most time consuming stage of the injection molding process, thus it cleary affects both the productivity and the part quality. Even through there are several commercialized package programs available in the injection molding industry to analyze the cooling performance of the injection molding coling stage, optimization of the cooling system has npt yet been accomplished in the literature due to the difficulty in the sensitivity analysis. However, it would be greatly desirable for the mold cooling system designers to have a computer aided design system for the cooling stage. With this in mind, the present study has successfully developed an interated computer aided design system for the injection molding cooling system. The CAD system utilizes the sensitivity analysis via a Boundary Element Method, which we recently developed, and the well-known CONMIN alforuthm as an optimization technique to minimize a weighted combination (objective function) of the temperature non-uniformity over the part surface and the cooling time related to the productivity with side constranits for the design reality. In the proposed objective function , the weighting parameter between the temperature non-uniiformity abd the cooling time can be adjusted according to user's interest. In this cooling system optimization, various design variable are considered as follows : (i) (design variables related to processing conditions) inlet coolant bulk temperature and volumetric flow rate of each cooling channel, and (ii) (design variables related to mold cooling system design) radius and location of each cooling channel. For this optimum design problem, three different radius and location of each cooling channel. For this optimum design problem, three different strategies are suffested based upon the nature of design variables. Three sample problems were successfully solved to demonstrated the efficiency and the usefulness of the CAD system.

Enhancement of L-Lactic Acid Production in Lactobacillus casei from Jerusalem Artichoke Tubers by Kinetic Optimization and Citrate Metabolism

  • Ge, Xiang-Yang;Qian, He;Zhang, Wei-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • Efficient L-lactic acid production from Jerusalem artichoke tubers, by Lactobacillus casei G-02, using simultaneous saccharification and fermentation (SSF) in a fed-batch culture, is demonstrated. A kinetic analysis of the SSF revealed that the inulinase activity was subjected to product inhibition, whereas the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellular NADH oxidase (NOX) activity was enhanced by the citrate metabolism, which dramatically increased the carbon flux of the Embden-Meyerhof-Parnas (EMP) pathway, along with the production of ATP. As a result, when the SSF was carried out at $40^{\circ}C$ after an initial hydrolysis of 1 h and included a sodium citrate supplement of 10 g/l, an L-lactic acid concentration of 141.5 g/l was obtained after 30 h, with a volumetric productivity of 4.7 g/l/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/l00 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with a high productivity from Jerusalem artichokes has not been reported previously, making G-02 a potential candidate for the economic production of L-lactic acid from Jerusalem artichokes on a commercial scale.

Enzymatic Production of Galactooligosaccharide by Bullera singularis $\beta$-Galactosidase

  • SHIN, HYUN-JAE;JI-WON YANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.484-489
    • /
    • 1998
  • Galactooligosaccharides (GalOS) were efficiently produced by partially purified $\beta$-galactosidase from the yeast strain Bullera singularis ATCC 24193. Ammonium sulfate precipitation and ultrafiltration methods were used to prepare the enzyme. The enzyme activity decreased at $50^{\circ}C$ and above. A maximum yield of 40% (w/w) GalOS, corresponding to 120 g of GalOS per liter, was obtained from 300 g per liter of lactose solution at $45^{\circ}C$, pH 3.7 when the lactose conversion was 70%. The yield of GalOS did not increase with increasing initial lactose concentration but the total amounts of GalOS did. Volumetric productivity was 4.8 g of GalOS per liter per hour. During this reaction, the by-products, glucose and galactose, were found to inhibit GalOS formation. Reaction products were found to be comprised of disaccharides and trisaccharides according to TLC and HPLC analyses. We propose the structure of the major product, a trisaccharide, to be ο-$\beta$-D-galactopyranosyl-(l-4)-ο-$\beta$-D-galactopyranosyl-(l-4)-$\beta$-D-glucose (4'-galactosyl lactose).

  • PDF

Determination of Optimum Conditions for Xylose Fermentation by Pichia stipitis (Pichia stipitis에 의한 Xylose 발효의 최적조건 결정)

  • 권순효;유연우서진호
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.452-456
    • /
    • 1993
  • This study was carried out to optimize the fermentation conditions for direct alcohol fermentation of xylose by Pichia stipitis CBS 5776. The best cell growth and the ethanol production were obtained under 0.05 VVM aeration and 300rpm agitation at $30^{\circ}C$ using 100 g/l xylose medium of the initial pH 5.0. In the above condition, the maximum specific growth rate and maximum cell concentration were 0.14hr-1 and $1.3 \times109$ cells/ml, respectively. Pichia stipitis CBS 5776 also produced 40.2g/l ethanol utilizing about 96% of 100g/l xylose after 72hr fermentation. At this point, the overall volumetric ethanol productivity was 0.56g/1-hr and the ethanol yield was 0.42 g-ethanol/g-xylose consumed, which corresponds to 82% of the theoretical yield.

  • PDF