• Title/Summary/Keyword: volumetric oil content

Search Result 7, Processing Time 0.019 seconds

Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response (유전율에 의한 지반 매질내 유류침투거동 분석)

  • Kim Man-Il;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 2005
  • For detecting a ground contamination survey, soil sampling method have been used a drilling or coring technique in general. However these methods are very difficult to systematically real-time monitoring of variation of contamination degree in field. ]'n this research frequency Domain Reflectometry (FDR) system was suggested and carried out to experimental approaches for determination of oil contamination on surface and underground. Experimental method using FDR method was discussed with feasibility of measurement in the laboratory column test. It is determined to degree of oil contamination due to response of dielectric constant re-lated with volumetric water content(θ/sub w/) and volumetric oil content( θ/sub al/ ) of saturated and unsaturated soil media. And physical properties such as effective porosity and oil residual ratio of saturated soil media were also measured through real-time monitoring works using installed FDR measurement sensors, which are defected characteristics of oil movement in the saturated soil media under the soil column tests. In the results of these experiments, a range of effective porosity was estimated to about 0.35 compared with initial porosity 0.40 of manufactured saturated soil media, which is also calculated to about 87.5% to the ratio of initial porosity to effective porosity. Finally oil residual ratio which is compared with volumetric water content and volumetric oil content was calculated about 62.5%.

Interaction Effect of Temperature and Moisture Content on the Oil Expression of Perilla Seed (들깨종자의 압착착유에 미치는 온도와 수분함량의 상호작용 효과)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.14-18
    • /
    • 1994
  • In order to elucidate the interaction effect between temperature and moisture content on the oil expression of perilla seed, recovery of expressed oil (REO) and volumetric strain of pressed cake (VSPC) of both roasted and unroasted perilla seeds were observed at different temperatures of 30, 40, 50 and $60^{\circ}C$, and different moisture contents of 2.5, 4.5, 6.5 and 8.5% (w.b). And duration of press was 11 min and applied pressure was 50 MPa. At the low temperature REO and VSPC of roasted and unroasted perilla seed increased in high moisture content and at the high temperature those increased in low moisture content. But REO and VSPC at 8.5% moisture content were decreased without relation to temperature. From the analysis of variance between expression factors and REO and VSPC, temperature and moisture contents showed high significance. Also the interaction effect between temperature and moisture content was higher than temperature. In our experimental conditions, the highest interaction effect between expression factors was observed in the range of $2.5{\sim}4.5%$ of moisture content in all temperatures. The maximum REO of unroasted perilla seeds was observed as 84.4% at 2.5% of moisture content and $60^{\circ}C$, and that of roasted one was as 84.3% at 6.5% of moisture content and $30^{\circ}C$.

  • PDF

Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

  • Gomaa, Mohamed A.;Refaat, Mohamed H.;Salim, Tamer M.;El-Sayed, Abo El-Khair B.;Bekhit, Makhlouf M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.381-389
    • /
    • 2019
  • Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

Effect of Temperature and Pressure on the Oil Expression of Perilla Seed (온도와 압력이 들깨종자의 압착착유에 미치는 영향)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-32
    • /
    • 1993
  • In order to elucidate the temperature and pressure effect on the oil expression of perilla seed, recovery of expressed oil (REO) and volumetric strain of both roasted and unroasted perilla seeds were observed at different temperature, pressure and for different periods of press. In this experiment, moisture content of perilla seed was adjusted to 2.5% and temperature used were 30, 40, 50 and $60^{\circ}C$. Pressure applied were 10, 30, 50 and 70 MPa, and periods of press were 5, 7, 9 and 11 min. As temperature and pressure were increased or periods of press was lengthened, REO and volumetric strain of pressed cake were increased. Maximum REO of unroasted perilla seeds were found to be 85.59% and those of roasted perilla seeds be 85.30%, at 70 MPa, $60^{\circ}C$, and for 11 min. Viscosity of expressed oil were exponentially dependent on temperature and REO were increased as viscosity was decreased. From statistical analysis between effects of expression factors and REO and volumetric strain of pressed cake, importance of their effects was decreased in the order of pressure, temperature, $temperature{\times}pressure$ and periods of press. The multiple regression equation between REO(Y) and temperature (T), pressure (P), and periods of press (D) were as follows; $Y=7.95+36.85P+1.12T^2-0.55TP-5.08P^2\;r^2=0.97$ for unroasted perilla seed (p<0.01), $Y=4.50T+39.23P+0.83T^2-1.71P-5.07P^2\;r^2=0.99$ for roasted perilla seed (p<0.01).

  • PDF

Effects of Properties of Raw Materials on Biodiesel Production (바이오디젤 생산에 미치는 원료 특성의 영향)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.335-339
    • /
    • 2008
  • Biodiesel is an alternative and renewable energy source, which is hoped to reduce global dependence on petroleum and environmental problem. Biodiesel produced from a variety of oil sources such as vegetable oil, animal fat and waste oils, and has properties similar to those associated with petro-diesel, including cetane number, volumetric heating value, flash point, viscosity and so on. In this study, we investigate the effect of quality of raw materials on alkali-catalyzed transesterification for producing of biodiesel. The increase of content of free fatty acid and water in oil were caused the sharp decrease of conversion yield. Also, the low purity of methanol in reactant was inhibited the reaction rate. In the case of addition of sodium sulfate as absorbent to prepare catalyst solution, the content of fatty acid methyl ester in product was increased more about 1.6% than that of control. However, the addition of zeolite, sodium chloride and sodium sulfate as absorbent in reactant to remove water generated from reaction did not show any enhancement in the reaction yield. This result may provide useful information with regard to the choice and preparation of raw materials for more economic and efficient biodiesel production.

Experimental Assessment of Mesophilic and Thermophilic Batch Fermentative Biohydrogen Production from Palm Oil Mill Effluent Using Response Surface Methodology

  • Azam Akhbari;Shaliza Ibrahim;Low Chin Wen;Afifi Zainal;Noraziah Muda;Liyana Yahya;Onn Chiu Chuen;Farahin Mohd Jais;Mohamad Suffian bin Mohamad Annuar
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.278-286
    • /
    • 2023
  • The present work evaluated the production of biohydrogen under mesophilic and thermophilic conditions through dark fermentation of palm oil mill effluent (POME) in batch mode using the design of experiment methodology. Response surface methodology (RSM) was applied to investigate the influence of the two significant parameters, POME concentration as substrate (5, 12.5, and 20 g/l), and volumetric substrate to inoculum ratio (1:1, 1:1.5, and 1:2, v/v.%), with inoculum concentration of 14.3 g VSS/l. All the experiments were analyzed at 37 ℃ and 55 ℃ at an incubation time of 24 h. The highest chemical oxygen demand (COD) removal, hydrogen content (H2%), and hydrogen yield (HY) at a substrate concentration of 12.5 g COD/l and S:I ratio of 1:1.5 in mesophilic and thermophilic conditions were obtained (27.3, 24.2%), (57.92, 66.24%), and (6.43, 12.27 ml H2/g CODrem), respectively. The results show that thermophilic temperature in terms of COD removal was more effective for higher COD concentrations than for lower concentrations. Optimum parameters projected by RSM with S:I ratio of 1:1.6 and POME concentration of 14.3 g COD/l showed higher results in both temperatures. It is recognized how RSM and optimization processes can predict and affect the process performance under different operational conditions.

Induction of ${\beta}$-carotene by Ozone and Hydrogen Peroxide and Extraction Using Vegetable Oil from Microalga Dunaliella bardawil (미세조류 Dunaliella bardawil에서 오존과 과산화수소에 의한 ${\beta}$-carotene의 축적과 식용기름을 이용한 추출)

  • Yu, Gyeong-Won;Jeong, Uk-Jin;Jeong, Byeong-Cheol
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Halotolerant microalga Dunaliella bardawil was reported to massively accumulate the ${\beta}$-carotene, which protects cells from excess light intensity. Maximum specific growth rate of 0.168/hr was achieved when cells were cultivated at 1 N NaCl, pH 8.0, light intensity 80 ${\mu}E/m^{2}/s$, agitation 70rpm. For the effectiv accumulation of ${\beta}$-carotene, ozone ro hydrogen peroxide was added to media which was irradiated with white fuorescent lamps with moderate light intensity of 250 ${\mu}E/m^{2}/s$. As a result, maximum volumetric content of ${\beta}$-carotene was 324 ${\mu}$g/㎖. The ${\beta}$-carotene extraction efficiency of vegetable oils was in the order of olive oil, sesame oil, rice brain oil, corn oil, and soy bean oil. Sonication and warming was effective in ${\mu}$-carotene extraction and finally 96.9% of ${\beta}$ could be extracted using olive oil.

  • PDF