• 제목/요약/키워드: volumetric display

검색결과 45건 처리시간 0.022초

Volumetric three-dimensional display using Quantum optics

  • Baasantseren, Ganbat;Kim, Nam;Gil, Sang-Geun
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.329-330
    • /
    • 2007
  • Today some many types of 3D display are developed but that are not possibly multiviewer, multiview and full parallax. Our new research work uses the Quantum optic to develop 3D display. Quantum mechanically, we can think of the first photon making a virtual transition to the second state. If the second photon appears within the lifetime of that state, the absorption sequence to the third level can be completed. When the electron, located in the third state, shifts to the first state, that electron emits one visible photon. We controlled the two invisible lights to draw a pixel in volume.

  • PDF

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

비스플라인 부피에 기초한 유동 가시화 모델 (Flow Visualization Model Based on B-spline Volume)

  • 박상근;이건우
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

집적 영상법을 이용한 3차원 영상 정보 처리 (Three-dimensional image processing using integral imaging method)

  • 민성욱
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 하계학술발표회
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF

Analysis of Chemically and Thermally Induced Residual Stresses in Polymeric Thin Film

  • Lee, Sang Soon
    • 반도체디스플레이기술학회지
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2015
  • This paper deals with the residual stresses developed in an epoxy film deposited on Si wafer. First, chemically induced residual stresses due to the volumetric shrinkage in cross-linking resins during polymerization are treated. The curvature measurement method is employed to investigate the residual stresses. Then, thermally induced stresses are investigated along the interface between the epoxy film and Si wafer. The boundary element method is employed to investigate the whole stresses in the film. The singular stress is observed near the interface corner. Such residual stresses are large enough to initiate interface delamination to relieve the residual stresses.

마이크로 부품의 물성 및 신뢰성 평가를 위한 시험기 개발 (Development of a Micro Tensile Tester for the Material Characterization and the Reliability Estimation of Micro Components)

  • 이낙규;최석우;임성주;최태훈;이형욱;나경환
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.27-33
    • /
    • 2004
  • This paper is concerned with development of a micro tensile testing machine for optical functional materials such as single or poly crystal silicon and nickel film. Two micro tensile testers have been developed for various types of materials and dimensions. One of the testers is actuated by a PZT and the other is actuated by a servo motor for a precise displacement control. The specifications of PZT actuated micro tensile tester developed are as follows: the volumetric size of tester is desktop sized of 710$\times$200$\times$270 $mm^3$; the minimum load capacity and the load resolution in the load cell of 1N are 3 mN and 0.1 mN respectively; the full stroke and the stoke resolution of piezoelectric actuator are 1 mm and 10nm respectively. A special automatic specimen installing equipment is applied in order to prevent unexpected deformation and misalignment of specimens during handling of specimen for testing.

  • PDF

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.

Enhancement of MRI angiogram with modified MIP method

  • 이동혁;김종효;한만청;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.72-74
    • /
    • 1997
  • We have developed a 3-D image processing and display technique that include image resampling, modification of MIP, and fusion of MIP image and volumetric rendered image. This technique facilitates the visualization of the three-dimensional spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3-D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  • PDF

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.

고온 (750 ~ 850℃) SOFC용 밀봉재의 특성에 미치는 고열팽창계수를 갖는 필러의 영향 (The Effects of a Filler with a High Coefficient of Thermal Expansion on a Sealant for High-Temperature (750 ~ 850℃) SOFCs)

  • 김빛남;이미재;황종희;임태영;김진호;황해진;김일원;정운진
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.470-475
    • /
    • 2013
  • In this study, we report that effects of a filler with a high coefficient of thermal expansion on a sealant for high-temperature ($750{\sim}850^{\circ}C$) SOFC. We designed a $SiO_2-BaO-ZnO-B_2O_3-Al_2O_3$ glass system with a softening temperature higher than $750^{\circ}C$. The properties of the glass system show not only low volumetric shrinking but also low swelling. The glass system did not create a crystal phase during along-term heat treatment. We fabricated a seal gasket with 0, 10, 15, and 20 wt% cristobalite added as filler materials with glass powder. The coefficient of thermal expansion of the seal gasket increased according to cristobalite content. During along-term heat treatment, the leak rate decreased by about 5% after a heat treatment in an oxidizing atmosphere at $750^{\circ}C$ for 2000 h, also decreasing by about 6% after a heat treatment in a reducing atmosphere at $750^{\circ}C$ for 1000 h.