• Title/Summary/Keyword: volume tracking method

Search Result 81, Processing Time 0.025 seconds

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

Adaptive Moment-of-Fluid Method:a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

Adaptive Moment-of-Fluid Method: a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

ADAPTIVE MOMENT-OF-FLUID METHOD : A NEW VOLUME-TRACKING METHOD FOR MULTIPHASE FLOW COMPUTATION

  • Ahn, Hyung-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • A novel adaptive mesh refinement(AMR) strategy based on the Moment-of-Fluid(MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The adaptive mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroids given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

MOMENT-OF-FLUID METHOD FOR FREE SURFACE FLOW SIMULATION USING UNSTRUCTURED MESHES (비정렬 격자상에서 Moment-of-Fluid 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.65-67
    • /
    • 2011
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In this paper, unstructured mesh extension of the MOF method is to be presented. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Development of a Novel Tracking for Efficiency Improvement of PV System with Sensor Method (센서방식 태양광 발전시스템의 효율개선을 위한 새로운 추적알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2192-2199
    • /
    • 2009
  • This paper proposes a novel tracking algorithm for efficiency improvement of photovoltaic(PV) system using sensor method. PV system of sensor method is exactly impossible to track a sun position when insolation is low or rapidly changed by the clouds and fogs. Also, in this case, tracking device is occurred energy consumption by unnecessary operating. This statement of reason, real power of PV system is not increased than fixed PV system in specified location. Therefore, this paper proposes a novel tracking algorithm considered insolation for efficiency improvement of PV system using sensor method. And this paper analyzes the generation volume and proves the validity of proposed algorithm as compared with the conventional PV tracking system using sensor method.

Development of a novel tracking for efficiency improvement of PV system with sensor method (센서방식 태양광 발전시스템의 효율개선을 위한 새로운 추적알고리즘 개발)

  • Jang, Mi-Geum;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.424-427
    • /
    • 2009
  • This paper reposes a novel tracking algerian for efficiency improvement of photovoltaic(PV) system using sensor method PV system of sensor method is exactly impossible to track a sun position when insolation is low or rapidly changed by the clouds and fogs. Also, in this case, tracking device is occurred energy consumption by unnecessary operating. This statement of reason, real power of PV system is not increased than fixed PV system in specified location. Therefore, this paper proposes a novel ticking algorithm considered insolation for efficiency improvement of PV system using sensor method And this paper analyzes the generation volume and proves the validity of proposed algorithm as compared with the conventional PV tracking system using sensor method.

  • PDF

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Simulation of industrial multiphase flows (공학적 관점에서의 다상유동 문제의 수치해석)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

CURRENT STATUS OF THERMAL/HYDRAULIC FEASIBILITY PROJECT FOR REDUCED- MODERATION WATER REACTOR (2) - DEVELOPMENT OF TWO-PHASE FLOW SIMULATION CODE WITH ADVANCED INTERFACE TRACKING METHOD

  • Yoshida, Hiroyuki;Tamai, Hidesada;Ohnuki, Akira;Takase, Kazuyuki;Akimoto, Hajime
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2006
  • We start to develop a predictable technology for thermal-hydraulic performance of the RMWR core using an advanced numerical simulation technology. As a part of this technology development, we are developing the advanced interface tracking method to improve the conservation of volume of fluid. The present paper describes a part of the development of the twophase flow simulation code TPFIT with the advanced interface tracking method. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results of numerical simulation, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values obtained by the advanced neutron radiography technique including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.