• Title/Summary/Keyword: volume phase transition temperature

Search Result 52, Processing Time 0.021 seconds

Phase Transition Study on Ilmenite under High Pressure and Temperature (고온-고압하에서 티탄철석에 대한 상면이 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.161-169
    • /
    • 2002
  • high pressure and temperature conditions. However, those results are not consistent with one another, and phase boundary between ilmenite and perovskite phases determined only from the quenching method may be not so reliable at all. Therefore, in-situ high pressure-temperature (hP-T) X-ray diffraction measurements were performed up to 19 GPa and $700^{\circ}C$ in a large volume press apparatus using synchrotron radiation. Experimental results show that perovskite phase is stable at pressures above 16 GPa, and transforms back to $LiNbO_3$phase near 15 CPa at room temperature, and that the perovskite-ilmenite transition is back and forth near 15 CPa at $500^{\circ}C$. LiNbO$_3$phase transforms to ilmenite at 13 CPa and $300^{\circ}C$ and at 10.8 CPa and $400^{\circ}C$, respectively. These data indicate that $LiNbO_3$phase may have a stability region in the hP-T phase diagram and that the perovskite-ilmenite phase boundary would be quite different from that previously reported.

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

High pressure X-ray diffraction study on a graphite using Synchrotron Radiation (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • High pressure X-ray diffraction study was carried out on a graphite to investigate its compressibility as well as any possible phase transition to the hexagonal diamond structure at room temperature. Energy dispersive X-ray diffraction method was introduced using a Mao-Bell type diamond anvil cell with Synchrotron Radiation. Polycrystalline sodium chloride was compressed together with graphite for the high pressure determinations. Because of the poor resolution of the X-ray diffraction pattern of graphite, its compressibility was estimated to be almost same as that of NaCl by graphite (002) X-ray diffraction peak only. An observation of any new peak from a possible hexagonal diamond phase seems very unplausible for its definite identification based on the present data. Alternative approaches such as an Wiggler Radiation source as well as a Large Volume high pressure apparatus will be necessary for the detailed studies on a graphite in future.

  • PDF

Thermo-Sensitive Polyurethane Membrane with Controllable Water Vapor Permeation for Food Packaging

  • Zhou, Hu;Shit, Huanhuan;Fan, Haojun;Zhou, Jian;Yuan, Jixin
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.528-532
    • /
    • 2009
  • The size and shape of free volume (FV) holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, a segmented, thermo-sensitive polyurethane (TSPU) membrane with functional gate, i.e., the ability to sense and respond to external thermo-stimuli, was synthesized. This smart membrane exhibited close-open characteristics to the size of the FV hole and water vapor permeation and thus can be used as smart food packaging materials. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), positron annihilation lifetimes (PAL) and water vapor permeability (WVP) were used to evaluate how the morphological structure of TSPU and the temperature influence the FV holes size. In DSC and DMA studies, TSPU with a crystalline transition reversible phase showed an obvious phase-separated structure and a phase transition temperature at $53^{\circ}C$ (defined as the switch temperature and used as a functional gate). Moreover, the switch temperature ($T_s$) and the thermal-sensitivity of TSPU remained available after two or three thermal cyclic processes. The PAL study indicated that the FV hole size of TSPU is closely related to the $T_s$. When the temperature varied cyclically from $T_s-10{\circ}C$ to $T_s+10^{\circ}C$, the average radius (R) of the FV holes of the TSPU membrane also shifted cyclically from 0.23 to 0.467 nm, exhibiting an "open-close" feature. As a result, the WVP of the TSPU membrane also shifted cyclically from 4.30 to $8.58\;kg/m^2{\cdot}d$, which produced an "increase-decrease" response to the thermo-stimuli. This phase transition accompanying significant changes in the FV hole size and WVP can be used to develop "smart materials" with functional gates and controllable water vapor permeation, which support the possible applications of TSPU for food packaging.

Phase Transition of Zeolite X under High Pressure and Temperature (고온 고압 환경에서 합성 제올라이트 X의 상전이 비교연구)

  • Hyunseung Lee;Soojin Lee;Yongmoon Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • X-ray powder diffraction study was conducted on the bulk modulus and phase transition behavior of synthetic zeolite X under high temperature and high pressure. Water and HCO3- solution were used as a PTM. Sample was heated and pressurized up to 250 ℃ and 5.18 GPa. The change of unit cell volume and phase transition were observed by X-ray diffraction. The lattice constants and unit cell volume of zeolite X, gmelinite, natrolite, and smectite were calculated using the GSAS2 program to which Le Bail's whole powder pattern decomposition (WPPD) method was applied. The bulk modulus of each zeolite X and smectite were calculated using the EosFit program to which the Birch-Murnaghan equation was applied. The bulk modulus of zeolite X is 89(3) GPa in water run, and zeolite X is 92(3) GPa in HCO3- solution run. In both run, pressure induced hydration (PIH) occurred due to the inflow of PTM into the zeolite X framework at initial pressure. Zeolite X transited to gmelinite, natrolite, and smectite in water run. Zeolite X, however, transited to smectite in HCO3- solution run. Interzeolite transformation occurred in water run, and did not occur in HCO3- solution run, which is assumed that conflict between the environment to form zeolite and the pH of the HCO3- solution.

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Half lives of Gaseous Organochlorine Pesticides in Atmosphere (대기 중에서 가스상 유기염소계 살충제의 반감기)

  • Choi, Min-Kyu;Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.177-184
    • /
    • 2007
  • Gaseous organochlorine pesticides (OCPs : heptachlor epoxide, p, p'-DDE, ${\gamma}-HCH,\;{\alpha}-chlordane,\;{\gamma}-chlordane$ and trans-nonachlor) concentration was measured using PUF high volume sampler from June, 2000 to June, 2002 in the semi-rural atmosphere. The OCPs concentration in atmosphere, which is estimated by the slope (m) of Clausius-Clapeyron equation and phase-transition energy $({\Delta}H)$, was influenced by revolatilization from environmental matrix (soil, water and tree leaves) and a long range transportation of air mass. But the former affected OCPs concentration more than the latter. The degradation rate constants (k) of OCPs calculated using multiple regression analysis and revised standard temperature method were in good agreement each other. The value of k of ${\gamma}-HCH$ was very low as -0.0007, but the range of k of other components were $-0.00l8{\sim}-0.0038$. The half-life $({\tau})$ which was calculated by k of ${\gamma}-HCH$ was 2.6 years-the longest one, but that of heptachlor epoxide was in 0.5 year-the shortest one. $({\tau})\;of\;{\alpha}-chlordane,\;{\gamma}-chlordane$ and trans-nonachlor in technical chlordane was 1.0, 1.1 and 0.7 year respectively.

Hydrothermal synthesis of $PbTiO_3$ oxides with perovskite structure

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • The preparation of $PbTiO_3$ powder was carried out using the oxide starting material by hydrothermal method. The powder of a crystalline phase with perovskite structure was synthesized. The optimum conditions for the preparation of powder were as follows; hydrothermal solvent; 8M-KOH or 8M-NaOH, reaction temperature; 250~$270^{\circ}C$, run time; 10 h. The ,shape of synthesized powders were well developed crystalline faces with specific surface area of about 2.3 $\textrm m^2$/g in KOH solution and about 5.0 $\textrm m^2$/g in NaOH solution. The cell parameters of powder were a = 3.90$\AA$, c = 4.14 $\AA$ and cell volume was 57.30 $\AA^3$. The cell ratio (c/a) of powder was the same as the theoretical ratio with c/a = 1.06 and the phase transition temperature(Tc) of the powders was about $470^{\circ}C$.

Effects of Sb-Incorporation on the 2223 Phase in the Superconducting Bi-Pb-Sr-Ca-Cu-O System

  • Seong Han Kim;Dong Hoon Lee;Jong Sik Park;Seung Koo Cho;Sung Han Lee;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.115-118
    • /
    • 1994
  • Samples of ($Bi_{2-x}Sb_x)PbSr_2Ca_2Cu_3O_y$, compositions with x=0.0, 0.1, and 0.2 were prepared by solid-state reaction. The solubility of Sb into the 2223 phase is lower than 0.05 for the ratio of Sb/Bi. The lack of stability of the Sb-substituted $Bi_2O_2$ double layers is likely to cause the solubility low. There is no great dependence of lattice parameters on the Sb-content, and bonds around the square-pyramidal Cu atom are not affected by the $Sb^{3+}$ ion substituted. The superconducting transition temperature of this system is decreased gradually with increase of Sb, which is tentatively attributable to the perturbation of the Bi 6p-O 2p band and/or to the low volume fraction of the 2223 phase.

A Study on the Mechanical Properties of Ti-8Ta-3Nb Alloy for Biomaterials

  • Lee, Kyung-Won;Ban, Jae-Sam;Yu, Yeong-Seon;Cho, Kyu-Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2204-2208
    • /
    • 2004
  • Ti-8Ta-3Nb has been developed as a new biomaterial. The experimental specimens are as-cast and forged Ti-8Ta-3Nb alloys. Treatment in a solution, ranging from 760 to 960$^{\circ}C$ has carried out. The microstructural research has carried out after the solution treatment and the hardness was measured. The specific heat and the length variations of Ti-8Ta-3Nb were also measured. The optimum temperature for the solution heat treatment of Ti-8Ta-3Nb was found to be 880$^{\circ}C$. This was based on the mechanical properties and the volume fraction of ${\alpha}$ phase and their phases shown from the results of the solution heat treatment. From the results, the ${\beta}$ transition temperature of Ti-8Ta-3Nb was found to be between 860$^{\circ}C$ and 880$^{\circ}C$.