• 제목/요약/키워드: volume integral method

검색결과 84건 처리시간 0.022초

혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산 (Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;이형민
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법 (Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension)

  • 이정기
    • Composites Research
    • /
    • 제23권4호
    • /
    • pp.7-13
    • /
    • 2010
  • 체적 적분방정식법(Volume Integral Equation Method)이라는 새로운 수치해석 방법을 이용하여, 서로 상호작용을 하는 이방성 함유체를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 매우 효과적으로 수행하였다. 즉, 등방성 기지에 다수의 이방성 함유체가 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에 대하여, 다양한 함유체의 체적비에 대하여, 중앙에 위치한 이방성 함유체와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 단일의 이방성 함유체에 대한 체적 적분방정식법을 이용한 해와 해석해를 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.

혼합 수치해석 방법을 이용한 무한고체의 탄성해석 (Elastic Analysis of Unbounded Solids Using a Mixed Numerical Method)

  • 이정기;허강일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.341-348
    • /
    • 2001
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions.

  • PDF

혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석 (Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method)

  • 이정기;윤구영
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

인장 하중을 받는 무한 고체에 포함된 다수의 다이아몬드 형 함유체 문제 해석을 위한 체적 적분방정식법 (Volume Integral Equation Method for Problems Involving Multiple Diamond-Shaped Inclusions in an Infinite Solid under Uniaxial Tension)

  • 이정기
    • 대한기계학회논문집A
    • /
    • 제36권1호
    • /
    • pp.59-71
    • /
    • 2012
  • 체적 적분방정식법(Volume Integral Equation Method)이라는 새로운 수치해석 방법을 이용하여, 서로 상호작용을 하는 등방성 또는 이방성 다이아몬드 형 함유체를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 매우 효과적으로 수행하였다. 즉, 등방성 기지에 다수의 등방성 또는 이방성 다이아몬드 형 함유체의 중심이 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 다이아몬드 형을 포함하는 원형 실린더 함유체의 체적비에 대하여, 중앙에 위치한 다이아몬드 형 함유체와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하기 위하여, 체적 적분방정식법을 이용한 해를 유한요소법을 이용한 해와 비교해 보았다.

인장 하중을 받는 무한 고체에 포함된 다수의 등방성 함유체 문제 해석을 위한 체적 적분방정식법 (Volume Integral Equation Method for Multiple Isotropic Inclusion Problems in an Infinite Solid Under Uniaxial Tension)

  • 이정기
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.881-889
    • /
    • 2010
  • 체적 적분방정식법(Volume Integral Equation Method)이라는 새로운 수치해석 방법을 이용하여, 서로 상호작용을 하는 등방성 함유체를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 매우 효과적으로 수행하였다. 즉, 등방성 기지에 다수의 등방성 함유체가 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 함유체의 체적비에 대하여, 중앙에 위치한 등방성 함유체와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법을 이용한 해를 해석해 또는 유한요소법을 이용한 해와 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.

Multiple light diffraction theory in volume gratings using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제1권2호
    • /
    • pp.67-73
    • /
    • 1997
  • Light wave diffraction from multiple superposed volume gratings is inestigated using a perturbative iteration method of the integral equation of Maxwell's wave equation. The host material and index gratings are anisotropic and non-coplanar multiple volume gratings are considered. In this method, the paraxial approximation and lack of backward scattering in conventional coupled mode theory are not assumed. Systematic analysis of anisotropic wave diffraction due to multiple noncoplanar volume index gratings is performed in increasing level of diffraction orders corresponding to successive iterations.

혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발 (Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;허강일;진원재
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.