• Title/Summary/Keyword: volume fraction effect

Search Result 846, Processing Time 0.026 seconds

Evaluation of Endocrine Disrupting Chemicals-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Kim, Soung-Ho;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.195-195
    • /
    • 2003
  • It is well known that diesel exhaust particulate matter contains mutagenic PAHs, such as benzo[${\alpha}$]pyrene, benz[${\alpha}$]anthracene, chrysene, etc. Therefore it is suspected that these chemicals act on estrogen receptor and reveal endocrine-disrupting effects. Recent attention has focused on causative chemicals of endocrine-disrupting effects. We examined the estrogenic activity of respirable diesel exhaust particulate matter derived from diesel powered vehicle. PM2.5 diesel exhaust of vehicle was collected using a high volume sampler equipped with a cascade impactor. Diesel exhaust samples were fractionated according to EPA methods. The presence of estrogenic and antiestrogenic chemicals in PM 2.5 diesel exhaust was determined using E-screen assay. To quantitatively assess the estrogenic and antiestrogenic activities in diesel exhaust particulate matter, estradiol equivalent concentration (bio-EEQ) was calculated by comparing the concentration response curve of the sample with those of the estrogen calibration curve. Weak estrogenic activities and strong antiestrogenic activities were detected in the crude extract and moderately polar fractions. Higher antiestrogenic potency was observed with higher EROD activities in aliphatic and aromatic compounds fraction. In conclusion, estrogenic/antiestrogenic-like activities were present in diesel exhaust particulate matter. However, the health consequences of this observation was unknown, the presence of these activities may contribute to and exacerbate adverse health effect evoked by diesel exhaust particulate matter.

  • PDF

Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA (LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Kim, Dae-Jung;Kim, Jong-Hyun;Chang, Suk-Sang;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2012
  • This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

A Study on the Elution Behavior of some Metal-N-Alkylisonitrosoacetylacetone imine Chelates by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 몇 가지 금속-N-Alkylisonitrosoacetylacetone imine 킬레이트의 용리거동에 관한 연구)

  • Kim, Yong Jun;Kewon, Ji Hae;Lee, Won
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 1992
  • Liquid chromatographic behavior of Pd(II), Ni(II) and Co(III) in N-Alkylisonitrosoacetylacetone imine(HIAA-NR) chelates was investigated by reversed phase high perfomance liquid chromatography. The optimum conditions for the separation of IAA-NR-metal chelates were examined respect to the flow rate and mobile phase strength. The metal-N-Alkylisonitrosoacetylacetone imine chelates in solution were successfully separated on Novapak $C_{18}$ column using acetonitrile/water mixture as mobile phase. The elution order of chelates is methyl>ethyl>propyl>butyl as N-alkyl group for ligand is varied. It was found that all IAA-NR-metal chelates were eluted in an acceptable range of capacity factor value($0{\leq}log\;k^{\prime}{\leq}1$). The dependence of log k' on the volume fraction of water in the binary mobile phase was examined. Also, the dependence of k' on the liquid-liquid extraction distribution ratio(Dc) in acetonitrile-water-alkane extraction system was investigated for IAA-NR-metal chelate. Both kinds of dependence are linear, which suggests that the retention of the electroneutral metal chelates on Novapak $C_{18}$ column is largely due to the hydrophobic effect.

  • PDF

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process (브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향)

  • Kim, Yong-Ho;Yoo, Hyo-Sang;Na, Sang-Su;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

The Effects of Austempering Heat Treatment on the Processing Window and Mechanical Properties in Cast and Hot-rolled Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn Steel (주조 및 열간 압연된 Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn 강의 프로세싱 윈도우와 기계적 성질에 미치는 오스템퍼링 조건의 영향 비교)

  • Son, Je-Young;Hwang, Dong-Chan;Choi, Jae-Joo;Song, June-Hwan;Kim, Ji-Hun;Kim, Won-Bae;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.60-65
    • /
    • 2010
  • In this study, we investigate the effects of austempering heat treatment on the processing window and mechanical properties in cast and hot-rolled Fe-0.7 C-2.3 Si-0.3 Mn steel. Each specimens were austenitised at $900^{\circ}C$ for 7 min, and austempered at $260^{\circ}C,\;320^{\circ}C$, and $380^{\circ}C$ for the various periods of time from 2 min to 240 min. After heat treatment, the evaluation of stage I and stage II as performed by optical metallography, XRD, hardness test. Both cast and hot rolled specimens had similar processing window. So grain size effect is not important to the austempered high carbon high silicon cast steel. When the austempering temperature was $260^{\circ}C$, the microstructure consisted of the lower ausferrite while the upper ausferrite structure was formed at $380^{\circ}C$. As the austempering temperature increases from 260 to $380^{\circ}C$, the strength and hardness decreased, elongaton and volume fraction of austenite increased. In addition, there was no change of mechanical properties between cast and hot-rolled specimens.

Effect of SiC volume fraction on mechanical properties and microstructure of $Si_{3}N_{4}/SiC$ nanocomposites (SiC 부피분율이 $Si_{3}N_{4}/SiC$ 초미립복합재료의 기계적 특성과 미세구조에 미치는 영향)

  • 황광택;김창삼;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.386-391
    • /
    • 1996
  • SiC particles (average size is 270 nm) of 0, 10, 20, 30, 40 vol% were dispersed in $Si_{3}N_{4}$, and $Si_{3}N_{4}/SiC$ nanocomposites were fabricated by hot press. After sintering, matrix phase, ${\alpha}-Si_{3}N_{4}$ was transformed to ${\beta}-Si_{3}N_{4}$, and second phase, ${\beta}-SiC$ was not changed. No grain boundary crystalline phase by adding of sintering additives was detected. Grain growth of $Si_{3}N_{4}$ was supressed with increasing of SiC contents, and then fine grain was occurred. The highest fracture strength was obtained at 10 vol% SiC, and fracture toughness was decreased, but hardness was linearly increased with SiC content.

  • PDF

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.