• Title/Summary/Keyword: volume change

Search Result 2,916, Processing Time 0.036 seconds

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Observation of Volume Change and Subsidence at a Coal Waste Dump in Jangseong-dong, Taebaek-si, Gangwon-do by Using Digital Elevation Models and PSInSAR Technique (수치표고모델 및 PSInSAR 기법을 이용한 강원도 태백시 장성동 폐석적치장의 적치량과 침하관측)

  • Choi, Euncheol;Moon, Jihyun;Kang, Taemin;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1371-1383
    • /
    • 2022
  • In this study, the amount of coal waste dump was calculated using six Digital Elevation Models (DEMs) produced between 2006 and 2018 in Jangseong-dong, Taebaek-si, Gangwon-do, and the subsidence was observed by applying the Persistent Scatterer Interferometric SAR (PSInSAR) technique on the Sentinel-1 SAR images. As a result of depositing activities using DEMs, a total of 1,668,980 m3 of coal waste was deposited over a period of about 12 years from 2006 to 2018. The observed subsidence rate from PSInSAR was -32.3 mm/yr and -40.2 mm/yr from the ascending and descending orbits, respectively. As the thickness of the waste pile increased, the rate of subsidence increased, and the more recent the completion of the deposit, the faster the subsidence tended to occur. The subsidence rates from the ascending and descending orbits were converted to vertical and horizontal east-west components, and 22 random reference points were set to compare the subsidence rate, the waste rock thickness, and the time of depositing completion. As a result, the subsidence rate of the reference point tended to increase as the thickness of the waste became thicker, similar to the PSInSAR results in relation to the waste thickness. On the other hand, there was no clear correlation between the completion time of the deposits and the rate Of subsidence at the reference points. This is because the time of completion of the deposits at all but 5 of the 22 reference points was too biased in 2010 and the correlation analysis was meaningless. As in this study, the use of DEM and PSInSAR is expected to be an effective alternative to compensate for the lack of field data in the safety management of coal waste deposits.

Analysis of Causality of the Increase in the Port Congestion due to the COVID-19 Pandemic and BDI(Baltic Dry Index) (COVID-19 팬데믹으로 인한 체선율 증가와 부정기선 운임지수의 인과성 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.161-173
    • /
    • 2021
  • The shipping industry plummeted and was depressed due to the global economic crisis caused by the bankruptcy of Lehman Brothers in the US in 2008. In 2020, the shipping market also suffered from a collapse in the unstable global economic situation due to the COVID-19 pandemic, but unexpectedly, it changed to an upward trend from the end of 2020, and in 2021, it exceeded the market of the boom period of 2008. According to the Clarksons report published in May 2021, the decrease in cargo volume due to the COVID-19 pandemic in 2020 has returned to the pre-corona level by the end of 2020, and the tramper bulk carrier capacity of 103~104% of the Panamax has been in the ports due to congestion. Earnings across the bulker segments have risen to ten-year highs in recent months. In this study, as factors affecting BDI, the capacity and congestion ratio of Cape and Panamax ships on the supply side, iron ore and coal seaborne tonnge on the demand side and Granger causality test, IRF(Impulse Response Function) and FEVD(Forecast Error Variance Decomposition) were performed using VAR model to analyze the impact on BDI by congestion caused by strengthen quarantine at the port due to the COVID-19 pandemic and the loading and discharging operation delay due to the infection of the stevedore, etc and to predict the shipping market after the pandemic. As a result of the Granger causality test of variables and BDI using time series data from January 2016 to July 2021, causality was found in the Fleet and Congestion variables, and as a result of the Impulse Response Function, Congestion variable was found to have significant at both upper and lower limit of the confidence interval. As a result of the Forecast Error Variance Decomposition, Congestion variable showed an explanatory power upto 25% for the change in BDI. If the congestion in ports decreases after With Corona, it is expected that there is down-risk in the shipping market. The COVID-19 pandemic occurred not from economic factors but from an ecological factor by the pandemic is different from the past economic crisis. It is necessary to analyze from a different point of view than the past economic crisis. This study has meaningful to analyze the causality and explanatory power of Congestion factor by pandemic.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

The Air-stripping Process Conjugated with the Ultrasonic Treatment to Remove TOC in Groundwater around the LPG Underground Storage Cavern (탈기법과 초음파 처리법을 연계한 LPG 지하공동저장소 주변 오염지하수 내 TOC 제거)

  • Han, Yikyeong;Jun, Seongchun;Kim, Danu;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.511-519
    • /
    • 2022
  • In order to develop an air-stripping based remediation process to remove the TOC (Total Organic Carbon) in groundwater around the underground LPG storage cavern, the laboratory scale experiments at various conditions (change of air injection volume and temperature, the application of ultrasonic treatment, etc.) for two types of groundwater (initial TOC concentration of 608 mg/L and 153 mg/L, respectively). From results of experiment, as the air injection rate for stripping into groundwater increased from 2 L/min to 11 L/min and as the air-stripping time increased from 1 hour to 24 hour, the TOC removal efficiency of air-stripping increased. However, the TOC concentration of treated groundwater was higher than the discharge tolerance limit (100 mg/L) even after 24 hour stripping at the maximum air injection rate of 11 L/min. The main compounds of the TOC in groundwater were identified as methanol and propane and the long stripping time (more than 24 hour) was needed to separate the methanol from groundwater because of the affinity between water and methanol. At 20℃ and 4 L/min of air injection, the TOC removal efficiency increased to 59.1% after 24 hour air-stripping. When the temperature of groundwater increased to 30℃ and 40℃, the TOC removal efficiency increased up to 80.0% and 82.8%, suggesting that more than 24 hour air-stripping at 40℃ is needed to lower the TOC concentration to below 100 mg/L and the additional TOC removal process as well as the air-stripping is necessary. When the temperature increased to 60℃ and the ultrasonic treatment was conjugated with the air-stripping, the TOC removal efficiency increased to 87.8% within 5 hour stripping and the final TOC concentration (72.4 mg/L) was satisfied with the TOC discharge tolerance limit. The TOC removal efficiency for groundwater having low TOC concentration (153 mg/L) also showed similar removal efficiency of 89.7% (the final TOC concentration: 18.9 mg/L). Results in this study supported that the air-stripping conjugated with the ultrasonic treatment could remove successfully the TOC in groundwater around the underground LPG strorage cavern.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

Analysis on Statistical Characteristics of Household Water End-uses (가정용수 용도별 사용량의 통계적 특성 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Park, No Suk;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.603-614
    • /
    • 2008
  • End-uses of household water have been changed by a life style, housing type, weather, water rate and water supply facilities etc. and those variables can be considered as an internal and exogenous factors to estimate long-term demand forecasts. Analysis of influential factors on water consumption in households would give an explanation to cause on the change of trend and would help predicting the water demand of end-use in household. The purpose of this study is to analyze the demand trends and patterns of household water uses by metering and questionnaire such as occupation, revenue, numbers of family member, housing types, age, floor area and installation of water saving device, etc. The peak water uses were shown at Saturday among weekdays and July in a year based on the analysis results of water use pattern. A steep increase of total water volume can be found in the analysis of water demand trend according to temperature from $-14^{\circ}C$ to $0^{\circ}C$, while there are no significant variations in the phase of more than $0^{\circ}C$, with an almost stable demand. Washbowl water shows the highest and toilet water shows the lowest relation with temperature in correlation analysis results. In the results of ANOVA to find the significant difference in each unit water use by exogenous factors such as housing type, occupation, number of generation, residential area and income et al., difference was shown in bathtub water by housing type and shown in kitchen, toilet and miscellaneous water by numbers of resident. Especially, definite differences in components except washbowl and bathtub water, could be found by numbers of resident. Based on the result, average residents in a house should be carefully considered and the results can be applied as reference information, in decision making process for predicting water demand and establishing water conservation policy. It is expected that these can be used as design factors in planning stage for water and wastewater facilities.

Effects of Combined Breathing Exercise and Neuromuscular Electrical Stimulation on Patients with Severe COPD (중증 만성폐쇄성폐질환 환자를 위한 복합호흡운동과 신경근전기자극의 효과)

  • Kang, Jeong-Il;Park, Jun-Su;Jeong, Dae-Keun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.539-548
    • /
    • 2019
  • This study was designed to examine the effects of complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle on pulmonary function and cerebral cortex activity in patients with severe chronic obstructive pulmonary disease. After collecting samples from 20 patients with severe chronic obstructive pulmonary disease aged 60 to 80, 10 patients each were randomly placed in an experimental group and a control group. The experimental group conducted complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle, and the control group only conducted complex breathing exercise. As a pretest, pulmonary function and cerebral cortex activity were measured. The intervention program was applied to each group for 30 minutes, once a day, for 4 days a week, for 6 weeks, and the posttest was carried out the same way as the pretest. As a result, both groups showed significant differences in FEV1.0(Forced Expiratory Volume in One Second)(p<.001)(p<.05), and there were significant differences between the groups as well(p<.05). When comparing alpha waves in each domain of cerebral cortex, both of the experimental and control groups showed significant differences in Fp1, Fp2, F3 and F4 domains (p<.01)(p<.05). During the 6-week experiment, complex breathing exercise and neuromuscular electrical stimulation of Quadriceps Femoris muscle improved pulmonary function of patients with severe chronic obstructive pulmonary disease, and in relation to cerebral cortex activity, a positive breathing change was found due to the increase of alpha waves in the forehead domain. Therefore, it is considered that applying neuromuscular electrical stimulation of Quadriceps Femoris muscle to patients with severe chronic obstructive pulmonary disease additionally along with complex breathing exercise will bring a better therapeutic effect.

The Impact of Market Environments on Optimal Channel Strategy Involving an Internet Channel: A Game Theoretic Approach (시장 환경이 인터넷 경로를 포함한 다중 경로 관리에 미치는 영향에 관한 연구: 게임 이론적 접근방법)

  • Yoo, Weon-Sang
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.119-138
    • /
    • 2011
  • Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.

    shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
    shows various market conditions captured by the two consumer heterogeneities.
    (a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
    (c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition. summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
    summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.
    illustrates how this happens. When mangers consider the overall impact of the Internet channel, however, they should consider not only channel power, but also sales volume. When both are considered, the introduction of the Internet channel is revealed as more harmful to a physical retailer in Russia than one in Hong Kong, because the sales volume decrease for a physical store due to Internet channel competition is much greater in Russia than in Hong Kong. The results show that manufacturer is always better off with any type of Internet store introduction. The independent physical store benefits from opening its own Internet store when the average travel cost is higher relative to the disutility of using the Internet. Under an opposite market condition, however, the independent physical retailer could be worse off when it opens its own Internet outlet and coordinates both outlets (RI). This is because the low average travel cost significantly reduces the channel power of the independent physical retailer, further aggravating the already weak channel power caused by myopic inter-channel price coordination. The results implies that channel members and policy makers should explicitly consider the factors determining the relative distributions of both kinds of consumer disutility, when they make a channel decision involving an Internet channel. These factors include the suitability of a product for Internet shopping, the level of E-Commerce readiness of a market, and the degree of geographic dispersion of consumers in a market. Despite the academic contributions and managerial implications, this study is limited in the following ways. First, a series of numerical analyses were conducted to derive equilibrium solutions due to the complex forms of demand functions. In the process, we set up V=100, ${\lambda}$=1, and ${\beta}$=0.01. Future research may change this parameter value set to check the generalizability of this study. Second, the five different scenarios for market conditions were analyzed. Future research could try different sets of parameter ranges. Finally, the model setting allows only one monopoly manufacturer in the market. Accommodating competing multiple manufacturers (brands) would generate more realistic results.

  • PDF