• 제목/요약/키워드: voltage sags

검색결과 102건 처리시간 0.024초

컴퓨터 부하의 직렬 동조 필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구 (A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads)

  • 서범관;김경철;이근준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.460-461
    • /
    • 2006
  • Computer Loads can be found in all of modern society. The switching mode power supplies used in personal computers are major sources of harmonic currents. Harmonic currents can cause lots of harmonic problems such as disruption in computer performance. A series resonant filter is very effective in harmonic reduction for personal computer loads. Voltage sags are short duration reductions in rms voltage. The main causes of voltage sags are faults, motor starting, and transformer energizing. Personal computers are another example of devices sensitive to voltage sags. A serious voltage sag at the terminals way lead mis-operation of the equipment. This paper presents an in depth analysis to evaluate the effect of harmonics reduction based on the IEC 61000-3-2 and the effect of voltage sag using ITI curve by applying a series resonant filter for personal computer loads.

  • PDF

EMTDC를 이용한 대형 산업체 수전설비의 전압저감해석과 보상에 관한 연구 (A Study on the Voltage Sags and Compensation of Large Industrial Distribution System using EMTDC)

  • 송빈태;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1106-1110
    • /
    • 1998
  • Voltage Sags, different from electric outages, are important to industrial reliability because modern process controls are often sensitive to voltage sag, the designer and operator should recognize sag characteristics of the electric system not only to protect malfunction of equipment but also to make best choices between reliability and equipment cost. The voltage sags and compensation countermeasures of large md industrial distribution systems have been simulated using EMTDC. The causes of voltage sags occurred in the system are discussed in detail and several countermeasures including the transfer of large induction motor from normal power source to backup source are recommended in order to enhance the ride-through characteristics of equipments.

  • PDF

타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구 (A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability)

  • 박세준;윤민한
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

Three-Phase PWM-Switched Autotransformer Voltage-Sag Compensator Based on Phase Angle Analysis

  • Mansor, Muhamad;Rahim, Nasrudin Abd.
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.897-903
    • /
    • 2011
  • Many voltage sag compensators have been introduced, including the traditional dynamic voltage restorer (DVR), which requires an energy storage device but is inadequate for compensating deep and long-duration voltage sags. The AC-AC sag compensators introduced next do not require a storage device and they are capable of compensating voltage sags. This type of compensator needs an AC-AC converter to regulate the output voltage. Presented in this paper is a three-phase PWM-switched autotransformer voltage sag compensator based on an AC-AC converter that uses a proposed detection technique and PWM voltage control as a controller. Its effectiveness and capability in instantly detecting and compensating voltage sags were verified via MATLAB/Simulink simulations and further investigated through a laboratory prototype developed with a TMS320F2812 DSP as the main controller.

배전계통에서의 전압저하 저감방법에 관한 연구 (The Study for Mitigating Voltage Sags in Distribution System)

  • 오용택;김진성
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.139-145
    • /
    • 2002
  • Recently, power-electronics equipments or machine that microprocessor is included and computers have been installed continuously in industrial process or region of electronics customer. So concern for power quality, especially sags has been increased. Because those equipments are very sensitive to sags. The sag is phenomenon that magnitude of load voltage temporarily decreases because of power system fault. If a certain equipment in industrial process have any trouble result from sag, it can cause utility to be charged for enormous economics loss. Therefore it need to analyze the characteristic of sag and then mitigation method for sags in distribution system in odor to increase reliability. This paper gives an overview of sags characteristic due to short circuit fault in distribution system and after a general discussion of the various forms mitigation, gives a sags mitigation method with concentrating on changing the distribution system like spot network, on-site generation.

  • PDF

배전계통 단선지락사고에 의한 전압저하 저감방법에 관한 연구 (The Study on Reducing Voltage Sags Due to Single Line Short Circuit Faults in Distribution System)

  • 오용택;김진성
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.111-116
    • /
    • 2003
  • Recently, power-electronics equipments or machine that microprocessor is included and computers have been installed continuously in industrial process or region of electronics customer. So concern for power quality, especially sags has been increased. Because those equipments are very sensitive to sags. The sag is phenomenon that magnitude of load voltage temporarily decreases because of power system fault. If a certain equipment in industrial process have any trouble result from sag, it can cause utility to be charged for enormous economics loss. Therefore it need to analyze the characteristic of sag and then mitigation method for sags in distribution system in oder to increase reliability. This paper gives an overview of sags characteristic due to short circuit fault in distribution system and after a general discussion of the various forms mitigation, gives a sags mitigation method with concentrating on mitigation-device interface method, especially FCL that is Fault Current Limiter.

  • PDF

부하에 따른 voltage sag의 특성 분석 (Analysis of voltage sag characteristics according to loads)

  • 최현영;류형선;오세호;박정균;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.236-238
    • /
    • 2001
  • Voltage sags are known as a serious problem causing mal-operation of equipment, process controllers and adjustable-speed drives. In this paper various analysis techniques for voltage sags will be presented, voltage sag characterization, equipment behaviour during voltage sag, stochastic assessment of voltage sags. And possible solution to voltage sag sensitivity problems are also described.

  • PDF

개인용 컴퓨터 부하의 직렬동조필터 적용에 의한 고조파 및 순간전압강하 영향에 관한 연구 (A Study on the Harmonics and Voltage Sags Effect by the Series Resonant Filter Application for Personal Computer Loads)

  • 서범관;김경철;이일무
    • 조명전기설비학회논문지
    • /
    • 제20권8호
    • /
    • pp.36-41
    • /
    • 2006
  • 컴퓨터 부하는 현대사회 전반에 널리 사용되고 있다. 개인용 컴퓨터의 스위칭 모드 전원공급 장치는 고조파 전류를 발생시키는 주된 발생원이다. 고조파 전류는 컴퓨터 오동작등 많은 고조파 장해를 일으킨다. 직렬동조필터는 개인용 컴퓨터의 고조파 저감에 매우 효과적이다. 순간전압강하는 전압의 크기가 짧은 시간동안 감소하는 것으로, 순간전압의 변동원인은 주로 계통의 고장, 급격한 부하변동 등으로 발생한다. 컴퓨터 부하는 전압강하에 민감한 것으로 알려져 있다. 본 논문에서는 개인용 컴퓨터 부하에 직렬동조필터를 적용하였을 때 고조파 저감효과를 IEC 61000-3-2로 평가하였고, 순간전압강하 영향을 ITI 곡선으로 심도있게 분석하였다.

An Improved Detection Technique for Voltage Sag using the Wavelet Transform

  • Kim, Chul-Hwan;Lee, Jong-Po;Ahn, Sang-Pil;Kim, Byung-Chun
    • KIEE International Transactions on Power Engineering
    • /
    • 제11A권4호
    • /
    • pp.1-8
    • /
    • 2001
  • This paper presents a discrete wavelet transform approach for detecting voltage sags initialized by fault conditions and starting of larger motors. The proposed technique is based on utilizing the summation value of D1(at scale 1) coefficients in multiresolution analysis(MRA) based on the discrete wavelet transform. In this paper, the proposed technique is tested under various cases of voltage sags. It is shown that the voltage sag detection technique based on the wavelet transform is a satisfactory and reliable method for detecting voltage sags in power quality disturbance analysis.

  • PDF

순간전압강하를 고려한 분산전원 최적위치 선정 (Optimal Placement of Distributed Generation Units Considering Voltage Sags)

  • 송영원;이계병;박창현
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1505-1510
    • /
    • 2013
  • This paper presents a method for determining the optimal placement of distributed generation units considering voltage sags. In general, the existing methods for distributed generation placement do not consider power quality problems such as voltage sags. In this paper, a novel method based on both genetic algorithm and voltage sag assessment is proposed for determining the placement of distributed generation unit. In the proposed method, the optimal placement is determined to minimize voltage sag effects and system losses.