• Title/Summary/Keyword: voltage converter

Search Result 3,993, Processing Time 0.025 seconds

Digital Power IC design using VHDL and FPGA (VHDL과 FPGA를 이용한 Digital Power IC 설계)

  • Kim, Min Ho;Koo, Bon Ha;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, the boost converter was implemented by digital control in many applications of the step-up. The PWM(pulse width modulation) control module of boost converter was digitized at power converter using the FPGA device and VHDL. The boost converter was designed to output a fixed voltage through the PI control algorithm of the PWM control module even if input voltage and output load are variable. The boost converter was digitized can be simplified by reducing the size of the module and the external control components. Thus, the digital power IC has advantageous for weight reduction and miniaturization of electronic products because it can be controlled remotely by setting the desired output voltage and PWM control module. The boost converter using the digital power IC was confirmed through experiments and the good performances were showed from experiment results.

Experimental Waveforms of Single-Pulse Soft-Switching PFC Converter

  • Taniguchi, Katsunori;Koh, Kang-Hoon;Lee, Hyun-woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.1002-1007
    • /
    • 2003
  • A new driving circuit for the SPSS (Single-Pulse Soft-Switching) PFC converter is proposed. The switching device of a SPSS converter switches once In every half cycle of an AC commercial power source. Therefore, it can be solved many problems caused by the high frequency operation. The proposed SPSS converter achieves the soft-switching operation and the EMI noise can be reduced. The resonant capacitor voltage supplies to the resonant inductor even if the input AC voltage is the vicinity of zero cross voltage. Then, the power factor and input current waveform can be improved without delay time. A new driving circuit achieves the operation of SPSS converter by one switching drive circuit. The proposed converter can be satisfied the IEC standard sufficiently.

  • PDF

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

Transfer Characteristics of the Zero- VoltageTransition Pulse-Width - Modulation Boost Converter (Zero-Voltage-Transition Pulse-Width-Modulation Boost 컨버터의 전달 특성)

  • 김진성;박석하;김양모
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.148-156
    • /
    • 1996
  • Increasing the switching frquency is essential to achieve the high density of switched mode power supplies, but this leads to the increase of switching losses. A number of new soft switching converters have been presented ot reduce switching losses, but most of them may have some demerits, such as the increase of voltage/current stresses and high conduction losses. To overcome these problems, the ZVT-PWM converter has recently been presented. in this paper, the operation characteristics of the ZVT-PWM boost converter is analyzed, and the steady-states (DC) and small-signal model of this converter are derived and analyzed, and then the transfer functions of this converter are derived. The transfer functions of ZVT-PWM boost converter are similar to those of the conventional PWM boost converter, but the transfer characteristics are affecsted by te duty ratio and the switching frequency.

  • PDF

The Design and Applications of LCC Resonant Converter (LCC 공진형 컨버터를 적용한 산업용 전원장치 응용연구)

  • Ahn, Suk-Ho;Jang, Sung-Roc;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.566-572
    • /
    • 2015
  • This study introduces an LCC resonant converter operating on a continuous conduction mode. The LCC resonant converter has the advantage of improving system efficiency, especially under the rated load condition, because it can reduce conduction loss by improving the resonance current shape and switching loss by increasing the lossless snubber capacitance. The proposed LCC resonant converter is applied to various applications, including a 60 kW EV fast charger, a 24 kJ/s high-voltage capacitor charger, and a 20 kV, 20 kW high-precision DC power supply. Experimental results prove that the proposed LCC resonant converter topology can be effectively used as a converter topology for these applications.

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

A Novel Single Phase Soft Switched PFC Converter

  • Altintas, Nihan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1592-1601
    • /
    • 2014
  • In this study, a novel single phase soft switched power factor correction (PFC) converter is developed with active snubber cell. The active snubber cell provides boost switch both to turn on with zero voltage transition (ZVT) and to turn off with zero current transition (ZCT). As the switching losses in the proposed converter are too low, L and C size can be reduced by increasing the operating frequency. Also, all the semiconductor devices operate with soft switching. There is no additional voltage stress in the boost switch and diode. The proposed converter has a simple structure, low cost and ease of control as well. It has a simple control loop to achieve near unity power factor with the aid of the UC3854. In this study, detailed steady state analysis of the proposed converter is presented and this theoretical analysis is verified by a prototype of 100 kHz and 500 W converter. The measured power factor and efficiency are 0.99 and 97.9% at full load.

Symmetrical Cockcroft-Walton circuit for Transformerless High Step-Up DC-DC Converter (변압기 없는 고승압 직류 컨버터용 대칭형 Cockcroft-Walton 회로)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.70-75
    • /
    • 2015
  • High Step-up DC-DC Converters have been demanded for renewable energy applications. Transformer or coupled inductor is generally used to boost output voltage of converters. This methods can relatively obtain high voltage than others, whereas have heavy weight and high cost. To complement these disadvantages, we studied transformerless high step-up DC-DC converter. In various transformerless topologies, Boost converters combined with Cockcroft-Walton have studied. In this paper, we proposed a symmetrical Cockcroft-Walton circuit for transformerless high step-up DC-DC converter. Finally, we simulated proposed converter to compare with existing converter. As a result, proposed converter has higher duty ratio or lower cost than existing transformerless converters which are discussed in this paper.

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.