• Title/Summary/Keyword: voltage controlled resistor

Search Result 57, Processing Time 0.034 seconds

A study on QR flyback DC-DC converter for synchronous rectifier (공진형 플라이백 DC-DC 컨버터용 동기정류기에 관한 연구)

  • Won, Ki-Sik;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1395-1397
    • /
    • 2005
  • This paper presents a novel current driving method for the synchronous rectifier(SR) in a flyback topology. The proposed current driven synchronous rectifier features low power loss, good performance and the gate voltage of FET in the synchronous rectifier is easily controlled by resistor ratio. The proposed SR driving method is implemented in a 200W Flyback converter with 400Vdc input and achieved excellent performance at full load.

  • PDF

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

Design of Quadrature CMOS VCO using Source Degeneration Resistor (소스 궤환 저항을 이용한 직교 신호 발생 CMOS 전압제어 발진기 설계)

  • Moon Seong-Mo;Lee Moon-Que;Kim Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1184-1189
    • /
    • 2004
  • A new schematic of quadrature voltage controlled oscillator(QVCO) is designed and fabricated. To obtain quadrature characteristic and low phase noise simultaneously, two differential VCOs are forced to un in quadrature mode by using coupling amplifier with a source degeneration resistor, which is optimized to obtain quadrature accuracy with minimum phase noise degradation. The designed QVCO was fabricated in standard CMOS technology. The measured performance showed the phase noise of below -120 dBc/Hz at 1 MHEz frequency offset, tuning bandwidth of 210 MHz from 2.34 GHz to 2.55 GHz with a tuning voltage varying form 0 to 1.8 V Quadrature error of 0.5 degree and amplitude error of 0.2 dB was measured with conjunction with low-lF mixer. The fabricated QVCO requires 19 mA including 5 mA in the VCO core part fiom a 1.8 V supply.

A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas (저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • This paper describes the minimum ignition limits for propane-air 5.25 Vol.% mixture gases in low voltage inductive circiuts. The improved effects on the ignition limit are studied by parallel safety components(resistors) for propane-air 5.25 Vol.% mixture gas in low voltage inductive circuits. The experimental devices used in this test are the IEC type spark ignition test apparatus. The minimum ignition limits are controlled by the values of current in inductive circuit. Energy supplied from electric source is first accumulated at the inductance, it's extra energy is working as ignition source of the explosive gas. The improved effects on the ignition limit are respectively obtained as the maximum rising rate of 330% by composing parallel circuits between inductance and resistor as compared with disconnecting inductance with the safety components. The more values of inductance increase the higher improved effects of ignition limit rise. The less values of resistor the higher improved effects of ignition limit rise. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof machines which are applied equipment and detectors used in dangerous areas but also for datum for its equipment tests.

A CMOS Phase-Locked Loop with 51-Phase Output Clock (51-위상 출력 클록을 가지는 CMOS 위상 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.408-414
    • /
    • 2014
  • This paper proposes a charge-pump phase-locked loop (PLL) with 51-phase output clock of a 125 MHz target frequency. The proposed PLL uses three voltage controlled oscillators (VCOs) to generate 51-phase clock and increase of maximum operating frequency. The 17 delay-cells consists of each VCO, and a resistor averaging scheme which reduces the phase mismatch among 51-phase clock combines three VCOs. The proposed PLL uses a 65 nm 1-poly 9-metal CMOS process with 1.0 V supply. The simulated peak-to-peak 지터 of output clock is 0.82 ps at an operating frequency of 125 MHz. The differential non-linearity (DNL) and integral non-linearity (INL) of the 51-phase output clock are -0.013/+0.012 LSB and -0.033/+0.041 LSB, respectively. The operating frequency range is 15 to 210 MHz. The area and power consumption of the implemented PLL are $580{\times}160{\mu}m^2$ and 3.48 mW, respectively.

An Improved Triangular/Square-Wave VCO Using OTAs

  • Jeong, Jin-Woong;Won, Chang-Su;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.172-175
    • /
    • 2008
  • An improved triangular/square-wave VCO using OTAs is presented. It consists of two OTAs, a timing capacitor, and a resistor. A prototype circuit built with commercially available components exhibits less than 0.01% nonlinearity in its current-to-frequency transfer characteristic from 0.2 to 14 kHz and 450 ppm/$^{\circ}C$ temperature coefficient of frequency over $-20^{\circ}C$ to $40^{\circ}$.

  • PDF

A Versatile Design of Optronic Negative Resistance (호용성이 있는 광결합 부성저항회로의 설계)

  • 박성한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.4
    • /
    • pp.33-37
    • /
    • 1978
  • A versatile negative resistance using one transistor, one photo-coupler and three resisters, which can be used as either a voltage controlled or current controlled negative resistance, is designed. The versatility is obtained by changing the transistor and one connection of the circuit. The negative resistance region is linear and its value can be varied by varying one of the three resistor values.

  • PDF

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

Ultra fast Marx Generator of N2, SF6, N2-SF6 Mixture Gas based on Research Output Characteristics (초고속 Marx Generator의 N2, SF6, N2-SF6 혼합가스에 따른 출력 특성 연구)

  • Doo, Jin-Suk;Han, Seung-Moon;Huh, Chang-Su;Choi, Jin-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1850-1855
    • /
    • 2010
  • The application field of the pulse power is very wide. Recently, Pulse power technologies take a large place in several applications. Then, many civil and military applications proceed. Marx generator is widely used in high voltage applications. Marx generator is widely used in high voltage applications, such as eletromagnetic wave and power lasers. This paper, we described about the high voltage pulse generator. A compact size high voltage pulse generator with nanosecnd rise time has been fabricated and investigated experimentally. The marx generator has 2 stages. Each stage was constructed one charging capacitor, two electrodes and one charging resistor. A inductance structure is used in order to improve the switching performances fo the whole generator. The experiments of rise time in pure gas and mixtures of gases were described. We tested the Marx generator at different insulation gas. the results show that the dielectric strength of the $N_2-SF_6$ mixture was significantly increased compared with pure nitrogen gas. The experimental results show that the rise time characteristics of the Marx generator can be controlled through varying insulation gas.