• Title/Summary/Keyword: volatility models

Search Result 193, Processing Time 0.024 seconds

Comparison of the Korean and US Stock Markets Using Continuous-time Stochastic Volatility Models

  • CHOI, SEUNGMOON
    • KDI Journal of Economic Policy
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2018
  • We estimate three continuous-time stochastic volatility models following the approach by Aït-Sahalia and Kimmel (2007) to compare the Korean and US stock markets. To do this, the Heston, GARCH, and CEV models are applied to the KOSPI 200 and S&P 500 Index. For the latent volatility variable, we generate and use the integrated volatility proxy using the implied volatility of short-dated at-the-money option prices. We conduct MLE in order to estimate the parameters of the stochastic volatility models. To do this we need the transition probability density function (TPDF), but the true TPDF is not available for any of the models in this paper. Therefore, the TPDFs are approximated using the irreducible method introduced in Aït-Sahalia (2008). Among three stochastic volatility models, the Heston model and the CEV model are found to be best for the Korean and US stock markets, respectively. There exist relatively strong leverage effects in both countries. Despite the fact that the long-run mean level of the integrated volatility proxy (IV) was not statistically significant in either market, the speeds of the mean reversion parameters are statistically significant and meaningful in both markets. The IV is found to return to its long-run mean value more rapidly in Korea than in the US. All parameters related to the volatility function of the IV are statistically significant. Although the volatility of the IV is more elastic in the US stock market, the volatility itself is greater in Korea than in the US over the range of the observed IV.

Bootstrap-Based Test for Volatility Shifts in GARCH against Long-Range Dependence

  • Wang, Yu;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.495-506
    • /
    • 2015
  • Volatility is a variation measure in finance for returns of a financial instrument over time. GARCH models have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986) and it is said that volatility is highly persistent when the sum of the estimated coefficients of the squared lagged returns and the lagged conditional variance terms in GARCH models is close to 1. Regarding persistence, numerous methods have been proposed to test if such persistency is due to volatility shifts in the market or natural fluctuation explained by stationary long-range dependence (LRD). Recently, Lee et al. (2015) proposed a residual-based cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. We propose a bootstrap-based approach for the residual-based test and compare the sizes and powers of our bootstrap-based CUSUM test with the one in Lee et al. (2015) through simulation studies.

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

Volatility-nonstationary GARCH(1,1) models featuring threshold-asymmetry and power transformation (분계점 비대칭과 멱변환 특징을 가진 비정상-변동성 모형)

  • Choi, Sun Woo;Hwang, Sun Young;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • Contrasted with the standard symmetric GARCH models, we consider a broad class of threshold-asymmetric models to analyse financial time series exhibiting asymmetric volatility. By further introducing power transformations, we add more flexibilities to the asymmetric class, thereby leading to power transformed and asymmetric volatility models. In particular, the paper is concerned with the nonstationary volatilities in which conditions for integrated volatility and explosive volatility are separately discussed. Dow Jones Industrial Average is analysed for illustration.

APPROXIMATION FORMULAS FOR SHORT-MATURITY NEAR-THE-MONEY IMPLIED VOLATILITIES IN THE HESTON AND SABR MODELS

  • HYUNMOOK CHOI;HYUNGBIN PARK;HOSUNG RYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.180-193
    • /
    • 2023
  • Approximating the implied volatilities and estimating the model parameters are important topics in quantitative finance. This study proposes an approximation formula for short-maturity near-the-money implied volatilities in stochastic volatility models. A general second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor expansion, an approximation formula for implied volatility is obtained for short-maturity nearthe-money call options in two stochastic volatility models: Heston model and SABR model. In addition, we proposed a novel numerical method to estimate model parameters. This method reduces the number of model parameters that should be estimated. Generating sample data on log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fitting the sample data in the above two models. Our method provides parameter estimates that are close to true values.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

Effects of Normalization and Aggregation Methods on the Volatility of Rankings and Rank Reversals (정규화 및 통합 방법이 순위의 변동성과 순위 역전에 미치는 영향)

  • Park, Youngsun
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.709-724
    • /
    • 2013
  • Purpose: The purpose of this study is to examine five evaluation models constructed by different normalization and aggregation methods in terms of the volatility of rankings and rank reversals. We also explore how the volatility of rankings of the five models changes and how often the rank reversals occur when the outliers are removed. Methods: We used data published in the Complete University Guide 2014. Two universities with missing values were excluded from the data. The university rankings were derived by using the five models, and then each model's volatility of rankings was measured. The box-plot was used to detect outliers. Results: Model 1 has the lowest volatility among the five models whether or not the outliers are included. Model 5 has the lowest number of rank reversals. Model 3, which has been used by many institutions, appears to be in the middle among the five in terms of the volatility and the rank reversals. Conclusion: The university rankings vary from one evaluation model to another depending on what normalization and aggregation methods are used. No single model exhibits clear superiority over others in both the volatility and the rank reversal. The findings of this study are expected to provide a stepping stone toward a superior model which is both reliable and robust.

An Empirical Study on the Stock Volatility of the Korean Stock Market (한국 증권시장의 주가변동성에 관한 실증적 연구)

  • Park, Chul-Yong
    • Korean Business Review
    • /
    • v.16
    • /
    • pp.43-60
    • /
    • 2003
  • There are several stylized facts concerning stock return volatility. First, it is persistent, so an increase in current volatility lasts for many periods. Second, stock volatility increases after stock prices fall. Third, stock volatility is related to macroeconomic volatility, recessions, and banking crises. On the other hand, there are many competing parametric models to represent conditional heteroskedasticity of stock returns. For this article, I adopt the strategy followed by French, Schwert, and Stambaugh(1987) and Schwert(l989, 1990). The models in this article provide a more structured analysis of the time-series properties of stock market volatility. Briefly, these models remove autoregressive and seasonal effects from daily returns to estimate unexpected returns. Then the absolute values of the unexpected returns are used in an autoregressive model to predict stock volatility.

  • PDF

Neural network heterogeneous autoregressive models for realized volatility

  • Kim, Jaiyool;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.659-671
    • /
    • 2018
  • In this study, we consider the extension of the heterogeneous autoregressive (HAR) model for realized volatility by incorporating a neural network (NN) structure. Since HAR is a linear model, we expect that adding a neural network term would explain the delicate nonlinearity of the realized volatility. Three neural network-based HAR models, namely HAR-NN, $HAR({\infty})-NN$, and HAR-AR(22)-NN are considered with performance measured by evaluating out-of-sample forecasting errors. The results of the study show that HAR-NN provides a slightly wider interval than traditional HAR as well as shows more peaks and valleys on the turning points. It implies that the HAR-NN model can capture sharper changes due to higher volatility than the traditional HAR model. The HAR-NN model for prediction interval is therefore recommended to account for higher volatility in the stock market. An empirical analysis on the multinational realized volatility of stock indexes shows that the HAR-NN that adds daily, weekly, and monthly volatility averages to the neural network model exhibits the best performance.

Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models (장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정)

  • Oh, Jeongjun;Kim, Sunggon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.163-185
    • /
    • 2013
  • In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.