• Title/Summary/Keyword: volatility forecasting

Search Result 90, Processing Time 0.108 seconds

A Study for Forecasting Methods of ARMA-GARCH Model Using MCMC Approach (MCMC 방법을 이용한 ARMA-GARCH 모형에서의 예측 방법 연구)

  • Chae, Wha-Yeon;Choi, Bo-Seung;Kim, Kee-Whan;Park, You-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.293-305
    • /
    • 2011
  • The volatility is one of most important parameters in the areas of pricing of financial derivatives an measuring risks arising from a sudden change of economic circumstance. We propose a Bayesian approach to estimate the volatility varying with time under a linear model with ARMA(p, q)-GARCH(r, s) errors. This Bayesian estimate of the volatility is compared with the ML estimate. We also present the probability of existence of the unit root in the GARCH model.

An outlier-adaptive forecast method for realized volatilities (이상치에 근거한 선택적 실현변동성 예측 방법)

  • Shin, Ji Won;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • We note that the dynamics of realized volatilities (RVs) are near the boundary between stationarity and non-stationarity because RVs have persistent long-memory and are often subject to fairly large outlying values. To forecast realized volatility, we consider a new method that adaptively use models with and without unit root according to the abnormality of observed RV: heterogeneous autoregressive (HAR) model and the Integrated HAR (IHAR) model. The resulting method is called the IHAR-O-HAR method. In an out-of-sample forecast comparison for the realized volatility datasets of the 3 major indexes of the S&P 500, the NASDAQ, and the Nikkei 225, the new IHAR-O-HAR method is shown superior to the existing HAR and IHAR method.

Volatility analysis and Prediction Based on ARMA-GARCH-typeModels: Evidence from the Chinese Gold Futures Market (ARMA-GARCH 모형에 의한 중국 금 선물 시장 가격 변동에 대한 분석 및 예측)

  • Meng-Hua Li;Sok-Tae Kim
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.211-232
    • /
    • 2022
  • Due to the impact of the public health event COVID-19 epidemic, the Chinese futures market showed "Black Swan". This has brought the unpredictable into the economic environment with many commodities falling by the daily limit, while gold performed well and closed in the sunshine(Yan-Li and Rui Qian-Wang, 2020). Volatility is integral part of financial market. As an emerging market and a special precious metal, it is important to forecast return of gold futures price. This study selected data of the SHFE gold futures returns and conducted an empirical analysis based on the generalised autoregressive conditional heteroskedasticity (GARCH)-type model. Comparing the statistics of AIC, SC and H-QC, ARMA (12,9) model was selected as the best model. But serial correlation in the squared returns suggests conditional heteroskedasticity. Next part we established the autoregressive moving average ARMA-GARCH-type model to analysis whether Volatility Clustering and the leverage effect exist in the Chinese gold futures market. we consider three different distributions of innovation to explain fat-tailed features of financial returns. Additionally, the error degree and prediction results of different models were evaluated in terms of mean squared error (MSE), mean absolute error (MAE), Theil inequality coefficient(TIC) and root mean-squared error (RMSE). The results show that the ARMA(12,9)-TGARCH(2,2) model under Student's t-distribution outperforms other models when predicting the Chinese gold futures return series.

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

Threshold heterogeneous autoregressive modeling for realized volatility (임계 HAR 모형을 이용한 실현 변동성 분석)

  • Sein Moon;Minsu Park;Changryong Baek
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.295-307
    • /
    • 2023
  • The heterogeneous autoregressive (HAR) model is a simple linear model that is commonly used to explain long memory in the realized volatility. However, as realized volatility has more complicated features such as conditional heteroscedasticity, leverage effect, and volatility clustering, it is necessary to extend the simple HAR model. Therefore, to better incorporate the stylized facts, we propose a threshold HAR model with GARCH errors, namely the THAR-GARCH model. That is, the THAR-GARCH model is a nonlinear model whose coefficients vary according to a threshold value, and the conditional heteroscedasticity is explained through the GARCH errors. Model parameters are estimated using an iterative weighted least squares estimation method. Our simulation study supports the consistency of the iterative estimation method. In addition, we show that the proposed THAR-GARCH model has better forecasting power by applying to the realized volatility of major 21 stock indices around the world.

Autoencoder factor augmented heterogeneous autoregressive model (오토인코더를 이용한 요인 강화 HAR 모형)

  • Park, Minsu;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Realized volatility is well known to have long memory, strong association with other global financial markets and interdependences among macroeconomic indices such as exchange rate, oil price and interest rates. This paper proposes autoencoder factor-augmented heterogeneous autoregressive (AE-FAHAR) model for realized volatility forecasting. AE-FAHAR incorporates long memory using HAR structure, and exogenous variables into few factors summarized by autoencoder. Autoencoder requires intensive calculation due to its nonlinear structure, however, it is more suitable to summarize complex, possibly nonstationary high-dimensional time series. Our AE-FAHAR model is shown to have smaller out-of-sample forecasting error in empirical analysis. We also discuss pre-training, ensemble in autoencoder to reduce computational cost and estimation errors.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

A Comparative Study on the Forecasting Accuracy of Econometric Models :Domestic Total Freight Volume in South Korea (계량경제모형간 국내 총화물물동량 예측정확도 비교 연구)

  • Chung, Sung Hwan;Kang, Kyung Woo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • This study compares the forecasting accuracy of five econometric models on domestic total freight volume in South Korea. Applied five models are as follows: Ordinary Least Square model, Partial Adjustment model, Reduced Autoregressive Distributed Lag model, Vector Autoregressive model, Time Varying Parameter model. Estimating models and forecasting are carried out based on annual data of domestic freight volume and an index of industrial production during 1970~2011. 1-year, 3-year, and 5-year ahead forecasting performance of five models was compared using the recursive forecasting method. Additionally, two forecasting periods were set to compare forecasting accuracy according to the size of future volatility. As a result, the Time Varying Parameter model showed the best accuracy for forecasting periods having fluctuations, whereas the Vector Autoregressive model showed better performance for forecasting periods with gradual changes.

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.