• Title/Summary/Keyword: volatiles

Search Result 264, Processing Time 0.032 seconds

Antimicrobial and Antioxidant Properties of Secondary Metabolites from White Rose Flower

  • Joo, Seong-Soo;Kim, Yun-Bae;Lee, Do-Ik
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Low-molecular-weight secondary metabolites from plants play an important role in reproductive processes and in the defense against environmental stresses or pathogens. In the present study, we isolated various volatiles and phenolic compounds from white Rosa rugosa flowers, and evaluated the pharmaceutical activities of these natural products in addition to their ability to increase survival in response to environmental stress and pathogen invasion. The DPPH and hydroxyl radical-mediated oxidation assay revealed that the white rose flower extract (WRFE) strongly scavenged free radicals in a dose dependent manner. Moreover, WRFE inhibited the growth of E. coli and fatally attacked those cells at higher concentration (>0.5 mg/mL). FITC-conjugated Annexin V stain provided further evidence that WRFE had strong antimicrobial activity, which may have resulted from a cooperative synergism between volatiles (e.g. 1-butanol, dodecyl acrylate and cyclododecane) and phenolic compounds (e.g. gallic acid) retained in WRFE. In conclusion, secondary metabolites from white rose flower hold promise as a potential natural source for antimicrobial and non-chemical based antioxidant agents.

Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance

  • Ryu, Choong-Min;Farag, Mohammed A.;Pare, Paul. W.;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • Plant growth-promoting rhizobacteria (PGPR) are a wide range of root-colonizing bacteria with the capacity to enhance plant growth and control plant pathogens. Here we review recent progress that indicate some PGPR strains release a blend of volatile organic compounds (VOCs) that promote growth in Arabidopsis seedlings and induce resistance against Erwinia carotovora subsp. carotovora. In particular, the volatile components 2,3-butanediol and acetoin released exclusively from the PGPR strains triggered the greatest level of growth promotion and induced systemic resistance. Pharmacological applications of 2,3-butanediol promoted the plant growth and induced resistance, while bacterial mutants blocked in 2,3-butanediol and acetoin synthesis was devoid of growth-promotion and induced resistance capacities. The results suggested that the bacterial VOCs play a critical role in the plant growth promotion and induced resistance by PGPR. Using transgenic and mutant lines of Arabidopsis, we provide evidences that the signal pathway activated by volatiles from one PGPR strain is dependent on cyto-kinin activation for growth promotion and dependent on an ethylene-signaling pathway for induced pathogen resistance. This discovery provides new insight into the role of bacterial VOCs as initiators of both plant growth promotion and defense responses in plants.

국내산 참당귀 추출물의 휘발성 향기성분

  • 곽재진;이재곤;장희진;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.210-217
    • /
    • 1998
  • Volatile flavor components of extracts produced from the domestic angelica root, which are oleoresin and absolutes type, for tobacco flavoring materials were isolated by solvent extraction method and were analyzed by GC and GC/MSD. And then volatile flavor components of oleoresin were compared with volatiles isolated from absolutes. A total of 65 components were identified in the angelica root extracts, from which 41 components were identified in the oleoresin volatiles, contained 15 hydrocarbons, 12 alcohols, 6 acids, 10 esters and 2 miscellaneous components. The major components were hexadecanoic acid (7.79%), methyl palmitate (6.49%), ethyl palmitate (2.02 %) and sesquiterpenes and sesquiterpene alcohols, such as elemol (2.92 %), ${\gamma}$-selinene (2.19%), $\beta$-selinene (2.02%), $\alpha$-eudesmol (3.49%) and $\beta$-eudesmol (6.12%). On the other hand, volatiles of absolutes, from which 60 components were identified, contained 28 hydrocarbons, 14 alcohols, 5 acids, 10 esters and 3 miscellaneous components. The major components were hyrocarbons, such as undecane (5.11 %), dodecane (3.10%) and pentadecane (1.14 %), and $\alpha$-muurolene (1.64 %), ${\gamma}$-selinene (1.49%), $\beta$-selinene (2.12 %), $\alpha$-eudesmol (2.25%), $\beta$-eudesmol (4.87%), hexadecanoic acid (12.67%) and hexanoic acid (1.87 %).

  • PDF

Impact of High Temperature on the Maillard Reaction between Ribose and Cysteine in Supercritical Carbon Dioxide

  • Xu, Honggao;He, Wenhao;Liu, Xuan;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • An aqueous ribose-cysteine model system (initial pH 5.6) was conventionally heated to the same browning at varying temperatures ($120-180^{\circ}C$), supercritical carbon dioxide (SC-$CO_2$, 20 MPa) was also applied on the same matrices for same periods at each temperature and about 20% reduction of the absorbance at 420 nm was observed as compared with sole thermal treatment. The headspace volatiles from Maillard reaction mixtures were analyzed by solid-phase microextraction (SPME) in combination with gas chromatography and mass spectrometry (GC-MS), and predominated with sulfur containing compounds, such as thienothiophenes, polysulfur alicyclics, thiols, and disulfides. Reaction temperature exhibited complex effects on volatiles formation and those effects became further complicated by the SC-$CO_2$ treatment. The formation of noncarbonyl polysulfur heterocyclic compounds and thienothiophenes was generally favored at high temperatures. Most volatiles were inhibited in SC-$CO_2$ as compared with thermal treatment alone, however, the well-known meaty aromatic compounds, such as thiols and disulfides, were obviously enhanced.

Correlation between SPME-GC Analysis and the Aroma Intensity for Ginseng Volatiles (SPME-GC를 이용한 인삼의 향분석과 관능강도와의 상관관계)

  • Ryu, Sung-Kwon;Roh, Jin-Chul;Park, Hoon;Park, Sung-Kook
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.206-212
    • /
    • 2002
  • Ginsengs grown fur six years at different locations were harvested and prepared for white and red ginsengs. These fresh, white, red, and other ginsengs purchased from domestic and foreign countries were analyzed for their volatile compounds by solid phase microextraction-gas chromatography (SPME-GC) and SPME-GC/mass spectrometery (MS). The intensity of the ginseng volatiles perceived by nose was also measured in order to correlate the intensity with the corresponding GC analysis. Good correlations were obtained between the GC peak area and the degree of intensity evaluated by sensory panelists, indication that a reliable and objective evaluation of the aroma intensity of ginsengs by a simple GC analysis is possible.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

The characteristics of pyrolysis and combustion for a hollow cylindrical solid fuel (중공 원통형 고체연료의 열분해 및 연소특성)

  • 민성기;김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.517-527
    • /
    • 1989
  • A theoretical analysis for the characteristics of pyrolysis and combustion of solid fuel was carried out in the present study. The hollow cylindrical combustion model including gas phase and solid fuel at inside and outside respectively was developed for the numerical analysis and parametric studies. The effects of volatile contents in the porous solid fuel and Reynolds number at inlet of gas phase on the characteristics of pyrolysis and combustion such as the radial, axial and time variations of volatile mass flux through porous solid fuel, temperature, mass fractions of gaseous fuel and oxidizer, and flame shape were investigated in the parametric studies. The results of the present study show that the flame produced by the volatiles moves to the downstream of fuel with accelerating velocity with time until extinction is occurred resulting from the completion of pyrolysis. When flame is employed with smaller amount of volatiles content in the solid fuel, the flame sheet exists closer to the inner wall of solid fuel. As Reynolds number at inlet increases, the flame sheet moves to the inner wall due to effect of convection even though the volatiles by pyrolysis increases.

Research on Solar System Small Bodies using the Korean Small Telescopes Network

  • Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.4-60.4
    • /
    • 2019
  • Small bodies in the solar system are pristine leftovers of planetesimals since the formation epoch (~4.6 Gyr ago). After the formation, icy planetesimals have been preserved in the distant cold place beyond 30 au (i.e., Trans-Neptunian region) until recently without any catastrophic processes but have just been injected into inner region (<~5 au from the Sun) to be observed as comets. On the contrary, asteroids are rocky primitive objects (although some of them contains icy volatiles) distributing in the mainbelt between Mars and Jupiter orbits. Because of frequent encounters in the mainbelt, asteroids have experienced a number of repeated impacts until the present day. Namely, it is important to investigate thermal alternation process of cometary volatiles and refractories in the solar radiation field, whereas collisional and subsequence phenomena of asteroidal bodies. Although recent spacecraft observations revealed the physical natures on the surfaces of comets and asteroids, their interiors still remain largely unexplored. It is likely that a sudden brightening of a comet is associated with rapid sublimation of internal CO and CO2 or phase transition of amorphous H2O. An episodic dust ejection from an asteroid is causally related to an impact among asteroids, sudden sublimation of remaining subsurficial volatiles, etc. Because these transient phenomena provide rare opportunities to investigate their interiors, immediate observations using any optical instruments are particular important. In my presentation, I will review some examples of such transient phenomena in the solar system and propose possible collaborative research using the Korean Small Telescope Network.

  • PDF

Changes of Korean Traditional Yu-gwa Flavor and Characteristics during Storage (유과의 저장기간에 따른 휘발성 향미성분 및 특성 분석)

  • Yoo, Seung-Seok
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • The changes of the color, texture and volatile flavor compounds of Yu-gwa were investigated that affected by the oxidation during storage to characteristic Yu-gwa quality. Among the proximate compositions, carbohydrate was the most abundant component, and followed by lipid and moisture. Although the change of the color showed different pattern by the packaging materials during the storage period, the value of yellowness(b) increased but that of lightness(L) decreased dramatically after 3 month storage. In the textural properties reported closely related with the moisture content, hardness was fairly affected on the period of the storage rather than the type of packaging materials. The flavor compounds of Yu-gwa were analyzed to evaluate the change of distinct volatile compounds during storage. Of the twenty one separated volatile compounds, major volatiles were aldehydes, alcohols and alkenes. The results also showed that polyethylene(PE) contained less volatiles than polypropylene(PP) by the oxidation process during storage.2,4-Decadienal was gradually increased with the period of the storage, whereas octane and furan were decreased. The results provided that the change of the flavor distribution during the storage, and also the possibility of the volatiles such as hexanal, nonanal and 2,4-decadienal as the indicator for the oxidation process.

Volatile Components of Green Tea(Camellia sinensis L. var. Yabukita) by Purge and Trap Headspace Sampler (Purge와 Trap Headspace Sampler를 이용한 녹차의 휘발성 성분)

  • 이재곤;권영주;장희진;곽재진;김옥찬;최영현
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 1997
  • Volatile components of green tea were isolated by purge and trap headspace method and were analyzed by GC and GC/MSD. And ten headspace volatiles were compared with volatiles isolated by simultaneous distillation-extraction(SDE) method. A total of 99 components were identified in the green tea volatile components, from which 88 components were identified in the headspace volatiles, contained 20 alcohols, 30 hydrocarbons, 21 aldehydes, 10 ketones, 2 acids and 5 miscellaneous components. The major components were low boiling components, such as methyl butanal(3.1%), 1-penten-3-ol(5.48%), 2-penten-1-ol(2.89%), hexanal(5.77%), heptanal(1.90%), and ere 2,4-eptadienal(4.28%), linalool(2.27%), 2,6-dimethyl cyclohexanol(2.57%), $\alpha$-pinene(1.52%), caryophyllene(1.70%), and carbonyl compounds, such as $\alpha$-ionone(2.62%), $\beta$-ionone(2.98%), $\beta$-cyclocitral(2.0%). On the other hand SDE volatiles, from which 64 components were identified, contained 16 alcohols, 16 ydrocarbons, 15 aldehydes, 10 ketones, 3 acids and 4 miscellaneous components. The major components were alcohols, such as, benzyl alcohol(3.79%), linalool(9.52%), terpineol(2.16%), geraniol(2.75%), nerolidol(6.50%), ketones, such as $\alpha$-ionone(1.77%), $\beta$-ionone(4.80%), geranyl acetone(1.82%) and acids, such as hexanoic acid(1.45%), nonanoic acid(1.11%).

  • PDF