• Title/Summary/Keyword: volatile essential oil

Search Result 166, Processing Time 0.02 seconds

Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

  • Chee, Hee-Youn;Lee, Min-Hee
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.241-243
    • /
    • 2007
  • Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

A Comparison of Volatile Flavor Characteristics of Chwi-namuls by Terpenoid Analysis (Terpenoid 분석을 통한 취나물류의 향기지표물질 비교)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.930-940
    • /
    • 2012
  • A comparison of essential oils composition of Aster tataricus L. (gaemichwi), Ligularia fischeri (gomchwi), Solidago virga-aurea var. asiatica Nakai (miyeokchwi), and Aster scaber (chamchwi) was performed by gas chromatography and mass spectrometry for the identification of volatile flavor characteristics in chwi-namuls. The essential oils were extracted by the hydro distillation extraction method. One hundred volatile flavor components were identified from gaemichwi essential oil. ${\alpha}$-Pinene (11.5%) was the most abundant compound, followed by myrcene (8.9%) and ${\beta}$-pinene (7.5%). Ninety-one volatile flavor components were identified from the essential oil of gomchwi. Aromadendrene (14.8%) was the most abundant component, followed by ${\beta}$-caryophyllene (7.6%) and 1-methyl-4-(1-methylethylidene)-cyclohexene (7.3%). Ninety-five volatile flavor constituents were detected in the essential oil of miyeokchwi, moreover, spathulenol (15.7%) was the most abundant component. Ninety-six volatile flavor constituents were detected in the essential oil of chamchwi. Epi-bicyclosesquiphellandrene (21.9%) was the most abundant component, followed by ${\beta}$-caryophyllene (9.5%) and ${\delta}$-terpinene (8.9%). The essential oil composition of gaemichwi was characterized by a higher contents of pinenes. The essential oil composition of gomchwi can be easily distinguished by the percentage of aromadendrene. Spathulenol and epi-bicyclosesquiphellandrene were regarded as the characteristic odorants of miyeokchwi and chamchwi, respectively.

Identification of Volatile Essential Oil, and Flavor Characterization and Antibacterial Effect of Fractions from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Houttuynia cordata Thunb -I. Identification of Volatile Essential Oil Compounds from Huttuynia cordata Thunb- (어성초 휘발성 정유성분의 동정과 분획물의 향특성 및 항균활성 -I. 어성초의 휘발성 정유성분의 동정-)

  • Kang, Jung-Mi;Cha, In-Ho;Lee, Young-Kuen;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.209-213
    • /
    • 1997
  • Since Houttuynia cordata is well known as a medicinal herb, due to its antibacterial activity on various microorganisms, present investigation was performed to identify the flavor compounds for volatile essential oil. Volatile essential oil was collected by simultaneous distillation-extraction(SDE), and then the oil components were separated on HP-5 capilliary column$(25m{\times}0.25mm\; i.d.)$ and identified those components by GC-MS. Fifty two compounds were isolated from the volatile essential oil of Houttuynia cordata and forty four were positively identified by GC-MS. The volatile compounds were composed mainly of terpenoids(25 classes), aldehydes(7 classes), alcohols(4 classes), ketones(3 classes), acids(1 class) and miscellaneous compounds(4 classes). Of these, the major compounds were ${\beta}-myrcene$, ${\beta}-ocimene$, decanal, 2-undecanone and geranyl propionate.

  • PDF

Changes in the Volatile Compounds of Artemisia capillaris Essential Oil during Storage (사철쑥 정유의 저장 중 향기성분 변화)

  • Chung, Mi-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.4 s.100
    • /
    • pp.413-422
    • /
    • 2007
  • In this study, changes in the volatile compounds of Artemisia capillaris essential oil were investigated under six different storage conditions for 6 months. The essential oil was collected by steam distillation and analyzed by a gas chromatography-mass selective detector (GC-MSD). Seventy-five volatile compounds were identified from the fresh essential oil of Artemisia capillaris. During storage, the total levels of aldehydes, alcohols, and ketones slightly decreased and the level of hydrocarbons greatly decreased; the total level of esters also decreased in the essential oil. Notably, the levels of carvacrol, eugenol, myrcene, 1,8-cineole, caryophyllene, coumarin, ${\alpha}-thujone$, ${\beta}-thujone$, borneol, and ${\gamma}-terpinene$, known as antioxidants and antimicrobial agents, decreased during storage. Finally, aerobic storage conditions caused greater reductions in some compounds even at low temperatures.

Analysis of Volatile Flavor Components of the Essential Oil from Chrysanthemum coronarium var. spatiosum Bailey (쑥갓으로부터 추출한 정유의 휘발성 향기성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigated the volatile flavor components of the essential oil from Chrysanthemum coronarium var. spatiosumBailey. The essential oil obtained from the aerial parts of the plant by the hydrodistillation extraction method was analyzed by gas chromatography and gas chromatography-mass spectrometry. One hundred and one (99.11%) volatile flavor components were identified in the essential oil from the Chrysanthemum coronarium var. spatiosum Bailey. The major compounds were hexanedioic acid, bis(2-ethylhexyl) ester (12.45%), 6.10.14-trimethyl-2-pentadecanone (7.94%), 1-(phenylethynyl)-1-cyclohexanol (6.34%), α-farnesene (5.55%), phytol (4.99%), and α-caryophyllene (4.39%). When the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey were classified by functional group, the content was high in the order of hydrocarbons, alcohols, esters, ketones, aldehydes, and phthalides. Sesquiterpene hydrocarbons were the most common hydrocarbons, mainly due to α-farnesene and α-caryophyllene. Among the alcohols, the content of aliphatic alcohols was significantly higher, mainly due to 1-(phenylethnyl)-1-cyclohexanol (6.34%) and phytol (4.99%). The analysis of the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey in this study will provide useful information to consumers when purchasing food and to industries using fragrance ingredients.

GC-MS Analyses of the Essential Oils from Ixeris dentate(Thunb.) Nakai and I. stolonifera A. Gray (GC-MS를 이용한 씀바귀 및 좀씀바귀의 정유 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.274-283
    • /
    • 2012
  • The volatile flavor compounds of the essential oils from Ixeris dentate (Thunb.) Nakai and I. stolonifera A. Gray were investigated. The essential oils were extracted by hydro distillation extraction method. Ninety-three volatile flavor components were identified from I. dentate (Thunb.) Nakai essential oil. Hexadecanoic acid(33.73%) was the most abundant compound, followed by (Z,Z,Z,)-9,12,15-octadecatrienoic acid(18.59%), 6,10,14-trimethyl-2-pentadecanonel(10.39%) and phytol(5.21%). Ninety-seven volatile flavor components were identified from the essential oil of I. stolonifera A. Gray. Hexadecanoic acid was the most abundant component(39.7%), followed by (Z,Z,Z)-9,12,15-octadecatrienoic acid(12.63%), 9,12-octadecadienoic acid, ethyl ester(12.36%), pentacosane(5.2%) and 6,10,14-trimethyl-2-pentadecanone(3.18%). The volatile composition of I. dentate (Thunb.) Nakai was characterized by higher contents of phytol and phthalides than those of I. stolonifera A. Gray. The volatile flavor composition of I. stolonifera A. Gray can easily be distinguished by the percentage of sesquiterpene compounds against I. dentate (Thunb.) Nakai essential oil.

Effects of Storage Conditions on Essential Oil of Artemisia princeps Pampan. cv. ssajuari (ssajuarissuk) (저장조건에 따른 싸주아리쑥 정유의 휘발성 성분 변화)

  • Chung, Mi-Sook
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.840-847
    • /
    • 2010
  • In this study, we identified the volatile compounds of Artemisia princeps Pampan. cv. ssajuari (ssajuarissuk) essential oils and analyzed changes in the contents of volatile compounds under four different storage conditions, such as exposure to air at $20^{\circ}C$ and $40^{\circ}C$. Sixty-five volatile compounds consisting of 6 monoterpene hydrocarbons, 23 oxygenated monoterpenes, 16 sesquiterpene hydrocarbons, 6 oxygenated sesquiterpenes, 1 diterpene, 6 benzene derivatives, and 7 non-isoprenoid compounds were identified on the basis of their mass spectra characteristics and retention indices from original ssajuarissuk essential oils. Identified compounds constituted 90.56% of the total peak area. Borneol (10.29%) was the most abundant compound in the original ssajuarissuk essential oils, followed by 1,8-cineole (9.06%), viridiflorol (8.99%), spathulenol (8.73%), $\alpha$-thujone (5.28%), and camphor (4.39%). After six months storage at $40^{\circ}C$ with the cap opened for 3 min everyday, the total amount of volatile compounds in essential oil as determined by the percentage peak area decreased by 84.93%. The total levels of cis-sabinene hydrate, camphor, 4-terpineol, humulene oxide, $\beta$-caryophyllene oxide, and caryophyllene alcohol increased significantly. For ssajuarissuk essential oils stored under experimental conditions, changes in the contents of volatile compounds in essential oils were accelerated by temperature and contact with the atmosphere.

Analyses of the Volatile Flavor Composition of Burdock (Arctium lappa L.) Leaves according to Harvesting Season (채취시기에 따른 우엉 잎의 휘발성 향기성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.2
    • /
    • pp.220-228
    • /
    • 2018
  • This study investigated the chemical composition of burdock (Arctium lappa L.) leaves essential oil, and the quantitative changes of the major terpene compounds according to the specific harvesting season. The essential oils obtained by the hydrodistillation extraction (HDE) method from the aerial parts of the burdock leaves were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). The essential oil composition of this plant was characterized by the higher content of phytol and 6,10,14-trimethyl-2-pentadecanone. Seventy seven (98.28%) volatile flavor compounds were identified in the essential oil from the burdock leaves harvested during the spring season of 2012, and phytol (33.47%) and 6,10,14-trimethyl-2-pentadecanone (32.47%) were the most abundant compounds. Eighty eight (99.08%) compounds were identified in the essential oil from the leaves harvested during the autumn season of 2012, and in this case, phytol (37.35%) and 6,10,14-trimethyl-2-pentadecanone (34.67%) were also the most abundant compounds. These two volatile components were confirmed as the major oil components of the burdock leaves during the time of any harvest. The ratio between the two components contained in the burdock essential oils did not differ significantly by harvesting season. But overall, the essential oil harvested during the spring season contained 65.94% of the two major components, while for the essential oil harvested during the autumn season, the total amount of these two major components was 72.02%. While the main ingredients of the essential oils were found to be unchanged from one harvest time to the next, it was found to differ in content. For the burdock leaves, the quality index of the volatile constituents according to the harvest time would be more useful for utilizing the total quantity other than the proportion between phytol and 6,10,4-trimethyl-2-pentadecone.

Antifungal Activity and Inhibitory Modes of Volatile Vapours of Essential Oils

  • Chee, Hee-Youn;Lee, Eun-Hee
    • Mycobiology
    • /
    • v.32 no.2
    • /
    • pp.102-104
    • /
    • 2004
  • Antifungal activities of volatile vapours of essential oils were investigated. Volatile vapours of test essential oils except Cedar-wood and Pachouri showed inhibitory activity against test fungi. Volatile vapours of Birch essential oils exhibited fungistatic activity against dermatophytic filamentous fungi while others did fungicidal activity. Spores of dermatophytic filamentous fungi are more susceptible to volatile vapours of essential oils than mycelia.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.