• Title/Summary/Keyword: voids

Search Result 910, Processing Time 0.023 seconds

The Analysis of Wear Phenomena on Added Carbon Content Gas Atmosphere in Ion-Nitriding (이온질화에 있어서 가스중 첨가탄소량에 대한 마모현상 분석)

  • 조규식
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.96-104
    • /
    • 1997
  • This paper was focused on the wear characteristics of ion-nitrided metal and with ion-nitride processing, which is basically concerned with the effects of carbon content in workpiece and added carbon content gas atmosphere on the best wear performance. Increased carbon content in workpiece increases compound layer thickness, but decreases diffusion layer thickness. On the other hand, a small optimal amount of carbon content in gas atmosphere increase compound layer thickness as well as diffusion layer thickness and hardness. Wear tests show that the compound layer of ion-nitrided metal reduces wear rate when the applied wear load is small. However, as the load becomes large, the existence of compound layer tends to increase wear rate. Compressive residual stress at the compound layer is the largest at the compound layer, and decreases as the depth from the surface increases. It is found in the analysis that under small applied load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the adhesive wear is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below the compound layer and delamination, which may explained by surface deformation, crack nucleation and propagation, is created and the existence of compound layer increases wear rate. For the compound layer, at added carbon contents of 0 percent and 0.5 at. percent, the $\varepsilon$ monophase is predominant. But at 0.7 at. percent added carbon, the $\varepsilon$ monophase formation tends to be severely inhibited and r' and $Fe_3C$ polyphase formation becomes dominant. This increased hard $\varepsilon$ phase layer was observed to be more beneficial in reducing friction and wear.

Characteristics of Plasma Sprayed TiO2-NiCr Conductive Heating Roll Coatings (가열 롤에서 플라즈마 TiO2-NiCr 용사피막의 특성)

  • Kang, Tae-Gu;Jin, Min-Seok;Ko, Young-Bong;Kim, Tae-Hyung;Cho, Sang-Hum;Park, Jung-Sik;Kim, Jong-Chul;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2007
  • The heating unit of direct heating method manufactured as the plasma spray coating of $TiO_2/NiCr$ conductive heating material on the surface of heating unit in order to improve the disadvantages of indirect heating method. $TiO_2$ and NiCr (80wt.%Ni-20wt.%Cr) that had the properties of conduction and heating was chosen for the conductive heating material. The compositions of the composite powders were studied $TiO_2-30wt.%NiCr\;and\;TiO_2-10wt.%NiCr$. As the heating temperature was increased, the hardness of heating layer was increased because of the fine microstructure and the decrease of porosity. The adhesion strength was decreased for coarsening and connection of voids in the insulation layer, and the electrical resistivity of heating layer was increased for fine crack formation and growth. In this study, the best efficient sprayed coatings with heating unit was concluded as the plasma sprayed $TiO_2-10wt.%NiCr$ coatings that was heat treated at $300^{\circ}C$.

석회동굴 생성물내 인회석의 산출특징에 대한 광물학적 연구

  • 장세정;김수진
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.15-15
    • /
    • 2003
  • Hydroxylapatite는 석회동굴 생성물의 표면이나 또는 생성정지선에서 쉽게 관찰할 수 있으며, 암적갈색을 띄고 있어 생성물의 흑화현상에 기여하고 있다. 특히, 박쥐 서식처나 그 주위의 동굴생성물 표면에서 다량의 hydroxylapatite가 관찰된다. 본 연구에서는 SEM-EDS와 EPMA, XRD를 이용하여 고수동굴(충북 단양군 가곡면 고수리, 천연기념물 제256호, 1976년에 개방), 성류굴(경북 울진군 근남면 장평리, 천연기념물 제155호, 1963년에 개방)과 기하동굴(강원도 평창군 미탄면 마하리, 미개방동굴) 내에서 채취한 hydroxylapatite 로 구성되어 있는 흑색 피각의 현미경적 조직을 연구하였다. Hydroxylapatite 피각은 모암(고수동굴과 성류굴에서는 calcite, 기하동굴에서는 calcite와 dolomite)의 표면에 약 0.3 mm의 두께로 존재하며 hydroxylapatite가 calcite와 dolomite를 교대하고 있다. 피각의 단면은 전자현미경하에서 비교적 밝은 부분인 hydroxylapatite와 상대적으로 어둡게 보이는 cellophane으로 구성되어 있다. Cellophane은 피각의 바깥 부위에 그리고 hydroxylapatite은 피각의 안쪽에 주로 분포하며 hydroxylapatite가 cellophane을 교대하고 있는 것으로 보아 cellophane으로부터 hydroxylapatite가 형성된 것으로 보인다. cellophane과 hydroxylapatite가 보여주는 조직을 구분하면: 1) 교질조직 (colloform texture) (두께: 1.2 ~ 3 $\mu\textrm{m}$, cellophane 층에 지름 0.5 ~ 1 $\mu\textrm{m}$의 voids가 존재), 2) 망상조직 (reticulate texture) (voids 크기 지름 0.5 ~ 1 $\mu\textrm{m}$), 3) 섬조직 (sea-and-island texture) (크기: 지름 2 ~ 4 $\mu\textrm{m}$) 등이다. Cellophane이 주로 분포하는 피각의 가장자리 부분에는 망상조직과 섬조직 및 void (지름: 약 10 $\mu\textrm{m}$)가 다량 존재하여, 망상조직과 void가 분포하는 곳에는 SO$_2$가 함유된다. 피각 표면에서 Ca, P, Si, Al 이외에 C와 S가 다량 함유되어 있는 막대모양의 박테리아 (지름: 1 $\mu\textrm{m}$, 길이: 1 ~ 10 $\mu\textrm{m}$)들의 집합체가 관찰되는데 박테리아가 피각 표면에 닿아 있는 부분은 박테리아 사이에 hydroxylapatite가 채워져 하나의 덩어리를 이룬다. 망상조직의 void의 크기와 박테리아의 지름이 비슷한 것으로 보아 망상조직은 박테리아 주위에 hydroxylapatite가 침전되고 그 후 박테리아가 있던 자리가 void로 남게 되면서 형성된 것으로 생각되며, 망상조직과 void에 존재하는 SO$_2$는 박테리아로부터 유래된 것으로 사료된다. 모암에는 P가 함유되어 있지 않기 때문에 hydroxylapatite의 P는 외부 물질(박쥐 분비물)에서 유래된 것으로 생각된다. hydroxylapatite 피각의 조직이 형태적으로 박테리아와 비슷한 것은 hydroxylapatite 생성에 미생물이 관여했다는 것을 암시한다.

  • PDF

Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging (3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향)

  • Choi, Eun-Hey;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor (입상의 이산화티타늄 박막을 이용한 수소센서)

  • Song, Hye-Jin;Oh, Dong-Hoon;Jung, Jin-Yeun;Nguyen, Duc Hoa;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

Effect of Thermal Aging on Intermetallic Compound Growth Kinetics of Au Stud Bump (Au stud 범프의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and $180^{\circ}C$ for 300hrs. The $AlAu_4$ phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, $AuSn_2,\;and\;AuSn_4$ phases formed at interface between the Au stud and Sn. $AuSn_2,\;AuSn_2/AuSn_4$, and AuSn phases dominantly grew as the aging time increased at $120^{\circ}C,\;150^{\circ}C,\;and\;180^{\circ}C$, respectively, while $(Au,Cu)_6Sn_5/Cu_3Sn$ phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at $AlAu_4/Au$, Au/Au-Sn IMC, and $Cu_3Sn/Cu$ interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.

Creep Analysis of Type 316LN Stainless Steel Using Reference Stress (참조응력을 이용한 316LN 스테인리스강의 크리프 해석)

  • Kim, Woo-Gon;Ryu, Woo-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

Blind Detouring Problem in Geographic Routing for Wireless Ad-hoc Networks (무선 애드-혹 망을 위한 위치기반 라우팅에서의 맹목적 우회경로 결정문제)

  • Na, Jong-Keun;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.428-437
    • /
    • 2006
  • Wireless ad-hoc routing has been extensively studied and many clever schemes have been proposed over the last several years. One class of ad-hoc routing is geographic routing where each intermediate node independently selects the next hop using the given location information of destination. Geographic routing, which eliminates the overhead of route request packet flooding, is scalable and suitable for large scale ad hoc networks. However, geographic routing may select the long detour paths when there are voids between a source and a destination. In this paper, we propose a novel geographic routing approach called Geographic Landmark Routing(GLR). GLR recursively discovers the intermediate nodes called landmarks and constructs sub-paths that connect the subsequent landmarks. Simulation results on various network topologies show that GLR significantly improves the performance of geographic routing.

Direction-based Geographic Routing for Wireless Sensor Networks (센서 네트워크에서 장애물 극복을 위한 방향기반의 라우팅 기법)

  • Ko, Young-Il;Park, Chang-Sup;Son, In-Keun;Kim, Myoung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.438-450
    • /
    • 2006
  • Geographic routing protocols are very attractive choice for routing in wireless sensor networks because they have been shown to scale better than other alternatives. Under certain ideal conditions, geographic routing works correctly and efficiently. The most commonly used geographic routing protocols include greedy forwarding coupled with face routing. Existing face routing algorithms use planarization techniques that rely on the unit-graph assumption. In real world, many conditions violate the unit-graph assumption of network connectivity, such as location errors, communication voids and radio irregularity, cause failure in planarization and consequently face routing. In this paper, we propose the direction-based geographic routing, which enables energy efficient routing under realistic conditions without planarization techniques. Our proposed approach is for the case in which many sensors need to collect data and send it to a central node. Simulation results show that the protocol exhibits superior performances in terms of energy consumption, delivery success rate, and outperforms the compared protocols.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.