• Title/Summary/Keyword: void ratio

Search Result 625, Processing Time 0.03 seconds

The Study on Sound Absorbing Characteristics of Porous Concrete according to Reverberation Room Methods (랜덤입사방법에 의한 포러스 콘크리트의 흡음특성에 관한 실험적 연구)

  • Seo Dae seuk;Park Seong Bum;Cho Gwang yeon;Jang Young Ill;Kim Hyung Seok;Lee yoon Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.568-571
    • /
    • 2004
  • This research estimated the physical. mechanical characteristic and the character of sound absorption according to target void ratio of porous concrete and the mixing ratio of recycled aggregate for the valid utilization of recycled aggregate using waste concrete and sound reduction out of a road, a railway, a residential street, and a downtown area. As a result of the test, compressive strength tended to be a radical strength fall when target void ratio was $25\%$ and contents of recycled aggregate exceeded over $50\%$. Also, the character of sound absorption of porous concrete which used recycled aggregate using waste concrete was the most excellent when target void ratio was $25\%$, and the influence by contents of recycled aggregate was trivial. Therefore, when the strength and the character of sound absorption of porous concrete are considered, it is proved valid that proper target void ratio was $25\%$ and contents of recycled aggregate using waste concrete was $50\%$ or so.

  • PDF

A Study on Tidal Soil Properties of Yongsangang Estuary Areas (영산강 하구지역 토질특성에 관한 연구)

  • 신일선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.59-67
    • /
    • 1984
  • This study was carried out to find physical and mechanical properties of soil in Yongsan project area to support basic data for tidalland reclamation. The main results are as follows. 1. Most of the soils in this area consist of clay and silt, and inorganic materials. 2. Natural moisture contents are ranged from 42.2% to 92.9% initial void ratio, from 1.4 to 2.3 Therefore it takes a longtime in Settlement of considerable depth. 3. Wet unit weights decrease with increasing of the nataral moistare contents as rt=2. 005-0. 0065wn.4. The relationships between compression index. and liquid limit, initial void ratio and natural moisture contents are found as follows respectively. Cc =0. 046+0. O12LL Cc=-0. 068+0.367eo Cc =0. 056+0. OO8Wn 5. Natural moisture content, plastic limit, plastic index, initial void ratio and liquid :limit are directly proportional to clay content ratio. The relationships are found as Wn=26. 083+0. 797Cy PL=14. 223+0. 128Cy P1=0. 457+0. 492Cy eo=0. 757+0. O2Ocy LL=14. 695+0. 620Cy. 6. Initial void ratio and liquid limit are directly proportional to natural moisture con-tent as follows. eo=0. 310+0.022wn LL=6. 275+0.592wn

  • PDF

A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics) (압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향))

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

Characteristics of Permeability for an Unsaturated Soil (불포화토의 투수특성)

  • Song, Chang-Seob;Shin, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.35-41
    • /
    • 2005
  • In order to analyse the flow problems for an unsaturated soil, it is required to examine closely the characteristics of the coefficient of permeability which is changing with the matric suction. To this ends, a permeability test was conducted on the three samples;granular soil, cohesive soil and silty soil. The specimen was made by pressing the static pressure on the mold filled with soil and the void ratio was controled with the different compaction ratio. And the test was performed by using the modified apparatus of the steady state method which was proposed by flute (1972). The range of matric suction was 0-90 kPa. The measured results for the coefficients of permeability were analysed with the void ratio and the compaction ratio, and it was examined closely the characteristics of the permeability for an unsaturated soil.

Properties of Water- Permeable Concrete Using Recycled Aggregate (재생골재를 이용한 투수콘크리트의 특성)

  • Boek, Sung-Hyun;Lim, Heon-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.437-440
    • /
    • 2005
  • The effects of polymer-cement ratio and recycled aggregate content on the continuous void ratio, coefficient of permeablity, compressvie, tensile and flexural strengths of water-permeable polymer-modified concretes using recycled aggregate are examined. As a result, the continuous void ratio and coefficient of permeablity of the water-permeable polymer-modified concretes tend to decrease with increasing polymer-binder ratio. Regardless of the recycled aggregate content, the compressvie, tensile and flexural strengths of the water-permeable polymer-modified concretes wtend to increase with increasing polymer-cement ratio.

  • PDF

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

Application of Geophysical Techniques for Observing the Void Ratio Changes of Dredged Soils (준설토의 간극비 변화 관찰을 위한 물리탐사기법의 적용)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.19-28
    • /
    • 2014
  • It is necessary to understand the behavior of the soils for the dredging constructions. The objective of this study is to estimate void ratio and density changes of the dredged soils by using the geophysical testing methods. A series of laboratory tests is performed to obtain geotechnical index properties of the specimen, retrieved from the west coastal of Korea. The sedimentation and self-weight consolidation tests are carried out with observing changes of the interfacial height and the elastic wave velocities. The same amounts of the soils are poured into the testing column at intervals of 12 hours until the interheight reaches to a certain level. After the completion of the sedimentatation and self-weight consolidation tests, downward permeability test is performed to assess a tidal influence in the nearshore. The mini resistance cone is penetrated into the specimen to measure the electrical resistivity with depth. All tests are completely finished, the weight of specimens are measured to calculate the void ratio with the depth. Experimental results show that the aspects of the self-weight consolidation are invisible during dredging process because of rapid sedimentation characteristics of ML. However, the elastic wave velocities increase with increasing in the effective stresses. During permeability test, measured permeability and the elastic wave velocities maintain almost identical values. Void ratio based on the elastic wave velocities changes linearly with time during the step dumpings. Void ratio estimated by the electrical resistivity represents the repeatedly layered depositions according to the step-by-step dumpings. Void ratio determined by soil sampling is similar to those of elastic waves and electrical resistivity profiles. This experimental study demonstrates that the geophysical testing methods may be an effective method for evaluating the behavior of dredged soils.

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

Void Ratio and Strength of Porous Polymer Concrete and Initial Growth Properties within Planting Block with Binder Contents (결합재량에 따른 포러스 폴리머 콘크리트의 공극률과 강도 및 식생 블록 내 초기 생장 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.101-110
    • /
    • 2010
  • This study was performed to evaluate the void ratio and strength of porous polymer concrete used coarse aggregates and unsaturated polyester resin to find optimum mix design of porous polymer concrete for planting block. Also, this study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in porous polymer blocks based on the experimental results of porous polymer concrete to develop environmentally friendly planting blocks. Tests for the void ratio and compressive strength of porous polymer concrete were performed at the curing age 7 days. Also, kinds of plants such as Tall fescue, Perennial ryegrass, Lespedeza and Alfalfa for planting were applied to porous polymer blocks. Within 6 weeks after seed, initial germination ratio, cover view and growth length for planting blocks were estimated by various methods.