• Title/Summary/Keyword: void characteristic

Search Result 99, Processing Time 0.03 seconds

The Prediction of Void Ratio in Unsaturated Soils (불포화토에서 공극비의 추정)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.51-57
    • /
    • 2006
  • This study was carried out to investigate the soil water characteristic curve and prediction of void ratio with net stress and matric suction using the linear elastic and volumetric deformation analysis method on unsaturated silty. The unsaturated soil tests were conducted using a modified oedometer cell and specimens were prepared at water content 2 times of liquid limit and required void ratio. The axis translation technique was used to create the desired matric suctions in the samples. It is shown that soil water characteristic curve and volumetric water content were affected significantly by preconsolidation pressure. As a matric suction increases, the reduction ratio of void ratio was shown to considerably small. Also, the predicted and measured void ratio for unsaturated soils using the linear elastic and volumetric deformation analysis showed good agreement as net stress and matric suction increases.

Development of Equation of the Soil-Water Characteristic Curve for an Unsaturated Soil (불포화의 흙-수분 특성곡선 방정식의 개발)

  • Song, Chang-Seob;Lim, Seong-Yoon;Kim, Myung-Hwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The purpose of this paper was to derive soil-water characteristic curve equation for unsaturated soil. To this end, a series of suction measured test was conducted on the selected 4 kinds of soil which is located in Korea, used the modified pressure plate apparatus. From the test results, it was proved that characteristic curve changes according to grain size distribution, size of void and fine grained soil contents. Residual degree of saturation(Sr) was decreased with void ratio and changed with fine grained soil contents, parameter ${\lambda}$ and hr was increased with void ratio. Soil-water characteristic curve equation based on the test result was suggested by void ratio or grain size distribution.

  • PDF

Dynamic Characteristic of Post-tensioned Void Slab (포스트텐션 중공슬래브의 동적 특성)

  • Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • Post-tensioned void slab is frequently used for improving the deflection and sound proofing. Two one story 8m spanned structures were built. One structure applied post-tensioned solid slab, but the other did post-tensioned void slab. Dynamic characteristics, which is natural frequency and damping ratio, was compared between that of solid slab and void slab before and after post tension. The natural frequency of void slab was greater than that of solid slab before and after post tension. It was shown that damping ratio of solid slab and void slab was almost same at two stages.

Influence of Air Void Characteristic on Chloride Diffusion Coefficient and Compressive Strength of Concrete using Urea and Sulfur (요소와 유황을 첨가한 콘크리트의 압축강도와 염화물 확산계수에 대한 공극특성의 영향)

  • Kim, Jae Hyun;Hong, Ki Nam;Jeon, Byeong Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.75-81
    • /
    • 2016
  • This study presents the effect of urea and sulfur admixture on compressive strength, chloride diffusion coefficient, and internal void distribution of concrete. Compressive strength of concretes with urea admixture by 5% increased by 5% relative to Control. However, that of concretes with urea admixture over 10% decreased. Chloride diffusion coefficient of concrete with urea and sulfur admixture decreased by 40% relative to Control. Additionally, the volume of internal void of concrete with urea and sulfur admixture decreased by 20% relative to Control. Therefore, it can be mentioned from test results that the use of adequate urea and sulfur admixture improves the mechanical properties and durability of concrete.

A Study on the Sound Absorption Coefficient and Void Characteristic of Foamed Concrete Using Bottom Ash (바텀애쉬를 사용한 기포콘크리트의 흡음률과 공극특성에 관한 연구)

  • Kang Ki Woong;Kang Chul;Kwag Eun Gu;No Jae myoung;Kwon Ki Joo;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.449-452
    • /
    • 2005
  • Sound absorption coefficient is affected by void in sound absorbing materials, therefore it is important to analyze properties of void pore. Also, it can be used to estimate performance of foamed concrete when it is applied to absorb sound. The purpose of this study is to analyze the sound absorption coefficient and void characteristic of foamed concrete using bottom ash. As a result of experiment, it was determined that an increase in sound absorption coefficient is achieved by increasing added amount of foam.

  • PDF

Effect of Impurities on Stress Induced Void Formation in Al-1% Si Conductors

  • Lee, Seong-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.12-17
    • /
    • 2001
  • It is shown in the present study that during the HTS (hot temperature storage) test, the metal contamination by impure elements can be highly susceptible to the void formation, leading to the open failure of the power line in the memory device. Such a functional failure associated with the metal contamination was investigated to be dominant in the early stages of the HTS test while the formation of a stress-driven void is mainly observed in the later stages. In particular, it was found that the void formed in the contaminated metal takes on a slit-like shape which has been known to be characteristic of the stress-related voiding. The impure elements leading to the metal degradation were identified to be carbon and oxygen introduced during the metal sputtering process. The experimental works show that the device reliability was significantly improved by reducing the level of such impure elements within metal. It is shown in the present study that during the HTS (hot temperature storage) test, the metal contamination by impure elements can be highly susceptible to the void formation, leading to the open failure of the power line in the memory device. Such a functional failure associated with the metal contamination was investigated to be dominant in the early stages of the HTS test while the formation of a stress-driven void is mainly observed in the later stages. In particular, it was found that the void formed in the contaminated metal takes on a slit-like shape which has been known to be characteristic of the stress-related voiding. The impure elements leading to the metal degradation were identified to be carbon and oxygen introduced during the metal sputtering process. The experimental works show that the device reliability was significantly improved by reducing the level of such impure elements within metal.

  • PDF

Prediction of the Volumetric Water Content Using the Soil-Water Characteristic Curve on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 체적함수비의 예측)

  • Song, Chang-Seob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.39-48
    • /
    • 2004
  • The purpose of this paper was to confirm the application of the equation of the soil-water characteristic curve on an unsaturated soil. To this ends, a series of suction test was conducted on the selected 4 kinds of soil which is located in Korea, using the modified pressure extractor apparatus. And it was carried out to analyze the experimental parameters which can describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that the matric suction was varied according to the grain size distribution, amount of fine grain particle and void ratio. Also it was found that the residual volumetric water content was decreased with the void ratio, but the index related air entry value, the soil parameter related water content and the parameter with residual water content were increased with the void ratio. And the application of equation of the soil-water characteristic curve was confirmed for the various conditions and the various state by the comparison between the volumetric water content measured by the experiment and the predicted values.

Prediction of the Degree of Saturation Using the Soil-Water Characteristic Curves on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 포화도의 예측)

  • Song, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.61-69
    • /
    • 2004
  • The aim of the work described in this paper was to confirm the application of the equation of the soil-water characteristic curves on an unsaturated soil. A series of suction test for unsaturated soils was conducted on the selected 4 kinds of soil using modified pressure extractor apparatus. And it was carried out to analyse The experimental parameters which can be describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that The matric suction varied according to the grain size distribution, amount of fine grain particles and void ratio. Also it was found that the residual degree of saturation was decreased with in crease of the void ratio, but the pore size distribution index and air entry value were increased with in crease of the void ratio. And The application of the soil-water characteristic curve equation was confirmed for the various conditions and the various state by the comparison between the measured degree of saturation and the predicted degree of saturation.

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

A Theoretical Investigation of Forming Limits of Voided Anisotropic Sheet Metals (기공을 포함한 이방성 판재의 성형한계 예측)

  • You Bongsun;Yim Changdong;Kim Youngsuk;Won Sungyeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1139-1145
    • /
    • 2005
  • Most failures of ductile materials in metal forming processes occurred due to material damage evolution - void nucleation, growth and coalescence. In this paper, the modified yield function of Liao et al in conjunction with the Hosford's yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with experimental data. Satisfactory agreement was obtained between the predictions and experimental data.