• Title/Summary/Keyword: voice-based control

Search Result 276, Processing Time 0.027 seconds

Control System for Smart Medical Illumination Based on Voice Recognition (음성인식기반 스마트 의료조명 제어시스템)

  • Kim, Min-Kyu;Lee, Soo-In;Cho, Hyun-Kil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • A voice recognition technology as a technology fundament plays an important role in medical devices with smart functions. This paper describes the implementation of a control system that can be utilized as a part of illumination equipment for medical applications (IEMA) based on a voice recognition. The control system can essentially be divided into five parts, the microphone, training part, recognition part, memory part, and control part. The system was implemented using the RSC-4x evaluation board which is included the micro-controller for voice recognition. To investigate the usefulness of the implemented control system, the experiments of the recognition rate was carried out according to the input distance for voice recognition. As a result, the recognition rate of the control system was more than 95% within a distance between 0.5 and 2m. The result verified that the implemented control system performs well as the smart control system based for an IEMA.

A Study on Stable Motion Control of Mobile-Manipulators Robot System (모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구)

  • Park, Moon-Youl;hwang, Won-Jun;Park, In-Man;Kang, Un-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

An Extension of the VoiceXML Platform for Push-based Voice Applications (푸쉬형 음성 서비스를 위한 VoiceXML 플랫폼의 확장)

  • 김경란;홍기형
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2002
  • VoiceXML is a standard dialog mark-up language for the neat generation voice applications. The current VoiceXML 1.0 specification is silent on who place outbound calls for push-based voice applications. The push-barred voice applications become very important in modern information systems such as CRM. In this paper, we design and implement an extended VoiceXML platform that supports both inbound and outbound voice information services. We also extend the VoiceXML DTD so as to be able to inbound/outbound fax based on Call Control Requirements of W3C.

Real-Time Travelling Control of Mobile Robot by Conversation Function Based on Voice Command (대화기능에 의한 모바일로봇의 실시간 주행제어)

  • Shim, Byoung-Kyun;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.127-132
    • /
    • 2013
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Design and Implementation of a Call Control Markup Interpreter and Its Interaction with Voice Dialog Systems (호 제어 마크업 해석기 개발 및 음성 대화 시스템과의 연동)

  • Lee, Kyung-A;Kwon, Ji-Hye;Kim, Ji-Young;Hong, Ki-Hyung
    • MALSORI
    • /
    • no.53
    • /
    • pp.171-183
    • /
    • 2005
  • Call Control eXtensible Markup (CCXML) is a standard language that supports a call control of voice dialog systems such as VoiceXML based systems. CCXML allows developers to handle telephony calls in an easy way without deep knowledge about telephony networks and their switching systems.We design and implement a call control markup interpreter. At the implementation, we use a Dialogic JCT-LS board, but, by designing a wrapping class for CTI (computer telephony board) features, the interpreter can easily adopt other CTI boards. We also design and implement event-based interaction scheme between the interpreter and voice dialog systems. For verifying the interaction scheme, we implement a simple voice dialog system.

  • PDF

Voice-based Device Control Using oneM2M IoT Platforms

  • Jeong, Isu;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.151-157
    • /
    • 2019
  • In this paper, we present a prototype system for controlling IoT home appliances via voice-based commands. A voice command has been widely deployed as one of unobtrusive user interfaces for applications in a variety of IoT domains. However, interoperability between diverse IoT systems is limited by several dominant companies providing voice assistants like Amazon Alexa or Google Now due to their proprietary systems. A global IoT standard, oneM2M has been proposed to mitigate the lack of interoperability between IoT systems. In this paper, we deployed oneM2M-based platforms for a voice record device like a wrist band and LED control device like a home appliance. We developed all the components for recording voices and controlling IoT devices, and demonstrate the feasibility of our proposed method based on oneM2M platforms and Google STT (Speech-to-Text) API for controlling home appliances by showing a user scenario for turning the LED device on and off via voice commands.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

Wireless Communication Real-Time Travelling Control of Mobile Robot by Voice Command (음성명령에 의한 모바일로봇의 무선통신 실시간 주행제어)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Feedback Active Noise Control Based Voice Enhancing Ear-Protection System

  • Moon, Seong-Pil;Chang, Tae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1627-1633
    • /
    • 2017
  • This paper proposes a voice enhancing ear-protection system which is based on feedback active noise control(FBANC). The proposed system selectively suppresses the background noise and preserves the talking voice by controlling the adaptive algorithm with the voice activity period detection module. The noise reduction performance of the proposed noise canceling algorithm is analytically derived for the two key performance affecting parameters, i.e., electro-acoustic coupling distance and noise bandwidth. The proposed system is also implemented with a floating-point DSP system and its performance is experimentally tested to compare with the analytically derived results. The achieved levels of noise reduction for the three different noise bandwidths cases, i.e., 10Hz, 50Hz, and 90Hz, are high to show 17.05dB, 10.54dB and 8.99dB, respectively. The feasibility of the proposed system is also shown by the peak noise reduction achieved more than 25dB while preserving the voice component in the frequency range between 200-800Hz.

Intelligent Steering Control System Based on Voice Instructions

  • Seo, Ki-Yeol;Oh, Se-Woong;Suh, Sang-Hyun;Park, Gyei-Kark
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.539-546
    • /
    • 2007
  • The important field of research in ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. For these purposes, many intelligent technologies for ship automation have been required and studied. In this paper, we propose an intelligent voice instruction-based learning (VIBL) method and discuss the building of a ship's steering control system based on this method. The VIBL system concretely consists of two functions: a text conversion function where an instructor's inputted voice is recognized and converted to text, and a linguistic instruction based learning function where the text instruction is understood through a searching process of given meaning elements. As a study method, the fuzzy theory is adopted to build maneuvering models of steersmen and then the existing LIBL is improved and combined with the voice recognition technology to propose the VIBL. The ship steering control system combined with VIBL is tested in a ship maneuvering simulator and its validity is shown.