• Title/Summary/Keyword: vit.$D_3$

Search Result 74, Processing Time 0.025 seconds

Some Factors Affecting Bone Density of Korean College Women (한국 여대생의 골밀도에 영향을 미치는 요인 분석 연구)

  • 유춘희
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.36-45
    • /
    • 1998
  • Dietary and other factors affecting bone density of 32 Korean healthy college women aged 19-23 years were assessed. Data for food and nutrient intake was obtained by a semiquantitiative food frequency questionnaire. Serum samples were anlayzed for total Ca, P, Ca++, PTH, calcitonin and 25-hydroxycholecalciferol , (25-OH-Vit D3) and BMDs of lumbar spine(L2-L4), femoral neck(FN), ward's triangle (WT) and trochanter(TR) were measured by an XR-series X-ray bone densitometer. Relationships between the factors and BMDs were analyzed by stepwise multiple regression analysis and Pearson's correlation coefficient(r). The results are summarized as follows. Mean daily intake of energy(86.1%), Ca(74.3%), vitamin A (53.75), Fe(49.75) and vitamin B$_2$(86.6%) were lower while other notrients incuding P(126%) were higher than the Korean RDA. The BMDs of lumbar spines and femurs ranged from 0.73g/$\textrm{cm}^2$ to 1.23g/$\textrm{cm}^2$and 0.48g/$\textrm{cm}^2$ to 1.04g/$\textrm{cm}^2$, respectively. Both protein and P intakes were inversely associated with serum total Ca. Furthermore, Ca intake as well as Ca/P ratio (Ca/P) were inversely associated with serum ionized Ca(Ca++) concentration. The intakes of protein P and Ca , however, were not significantly associated with the BMDs measured in this study. There were little association between BMDs and alcoholic beverage or caffeine consumption. The only significant association detected was a positive relationship between caffeine consumption and BMD of WT. It seemed to be noticeable that BMDs of L2-L$_4$, FN and WT were significantly inversely associated with serum P concentration. However, there was no significant association between BMDs and the levels of total Ca to Ca++ in serum. Body weight was positively associated with BMD of lumbar spine and BMI was also positively associated with BMDs of FN and WT. The subjects who had an early menarche appeared to have higher BMDs than those who had had a late mearche. According to stepwise multiple regression analysis. Menarche and BMI were stronger determinants of BMDs in the young women than was diet. P intake appeared to be a more potent dietary determinant than Ca intake. The three factors, menarche, BMI , and P intake , additionally accounted for 24% and 378% of the variance in BMDs of FN and L$_2$-L$_4$, respectively. Further investigation is necessary to determine the factors needed to increase serum P level which negatively affects. BMD in young Korean college women.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Functional component analysis and physical property of Cheonnyuncho (Opuntia humifusa) powder (천년초 분말의 기능성분 분석과 물리적 특성 연구)

  • Shin, Dong-Sun;Han, Gwi-Jung;Oh, Se-Gwan;Park, Hye-Young
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.838-844
    • /
    • 2015
  • The purpose of this study was to perform a functional components analysis and investigate the physical properties of powders made from the stems or fruit of freeze-dried Cheonnyuncho cactus (Opuntia humifusa). The functional components analysis showed that the stem and fruit powders han vitamin C levels of 42.14 mg and 105.21 mg, respectively. The stems powder contained more lutein than the fruit powder. The fruit powder contained more vitamin C than the stem powder. The SDF (soluble dietary fiber) and IDF (insoluble dietary fiber) in the stem powder were 45.24% and 22.15%, respectively, which were higher then the values for the fruit powder. The stem and fruit powders contained 19.30 mg/g and 25.10 mg/g of crude saponin, respectively. The pH of the stem and fruit powders was 5.34 and 5.07, respectively, both indicating low acidity. The L, a and b values of the stem powder color were 78.28, -3.71, and 19.19, respectively. The L, a and b values of the fruit powder color were 55.56, 24.84, and -3.18, respectively. The stems powder had a higher bulk density, water holding capacity, and swelling power than those of the fruit powder, but water-retaining capacity of the stem powder was lower than that of the fruit powder. In addition, the stems powder had a higher viscous material content and water uptake compared to the fruit powder. Based on the above results, we determined that Cheonnyuncho (Opuntia humifusa) powder had potentially useful functional components and physical properties.