• 제목/요약/키워드: visual servo

검색결과 62건 처리시간 0.028초

혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종 (Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method)

  • 이호원;권지욱;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어 (Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing)

  • 이성구;권지욱;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.

비전기술에 의한 모바일 로봇의 정밀 자세 제어 알고리즘 개발에 관한 연구 (A study on Development of Precise Orientation control Algorithm of the Mobile Robot Based Vision Technology)

  • 심현석;김태관
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.129-138
    • /
    • 2015
  • This study describe a new method to control posture and velocity for a wheeled mobile robot using visual feedback control method with a position based visual feedback. To slove the problem of vibration phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed visual servo control law introduces the fusion function based on a blending function. The chattering problem and rapid motion of the mobile robot can be eliminated. And we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture control law using visual servoing is verified by a theoretical analysis and simulation and experimental results.

자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘 (A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV))

  • 이판묵;전봉환;이종무
    • 한국해양공학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

신경 회로망을 이용한 로보트의 동력학적 시각 서보 제어 (Dynamic visual servo control of robotic manipulators using neural networks)

  • 박재석;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1012-1016
    • /
    • 1991
  • An effective visual servo control system for robotic manipulators based on neural networks is proposed. For this control system, firstly, one neural network is used to learn the mapping relationship between the robot's joint space and the video image space. However, in the proposed control scheme, this network is not used in itself, but its first and second derivatives are used to generate servo commands for the robot. Secondly, an adaptive Adaline network is used to identify the dynamics of the robot and also to generate the proper torque commands. Computer simulation has been performed indicating its superior performance. As far as the authors know, this is the first time attempt of the use of neural networks for a visual servo control of robots that compensates for their changing dynamics.

  • PDF

근사 자코비안 연산자를 이용한 경량 매니퓰레이터의 시각 서보 제어 (Visual Servo Control of Slender Manipulators Using an Approximate Jacobian Operator)

  • 이호길;김진영
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1086-1092
    • /
    • 2000
  • To realize a visual servo control of slender manipulators, two problems to be solved are analysed. The stability problem on so-called noncolocation control and the infinite order problem of the real Jacobian matrix caused by the elastic deformation are discussed. By considering the dynamic relations between rigid and elastic modes, a Jacobian operator is derived and the physical meaning is also explained. Then, for practical control, a simple control scheme using an approximate Jacobian is proposed and its stable conditions are proven by means of the $L_$2$ stability theory. The scheme is structurally similar to the conventional PD control laws, but external sensors(e. g. visual sensor) are used for positioning and internal sensors for damping. A good performance is obtained via control experiments of a slender two link manipulator.

  • PDF

컬러 좌표계 변환을 이용한 이동로봇의 시각 서보 제어기의 설계 (Design of Visual Servo Controller using Color Coordinate System Transformation in Mobile Robot)

  • 노창균;이기철;이양희;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.629-632
    • /
    • 1999
  • In this paper, color coordinate system transformation based visual servo controller has been considered. Mobile robot always has a position error and an orientation error resulted from wheel slipping etc.. Even more, the errors have accumulative properties. So feedback from environments is important. In this paper, by using color model faster land mark extraction can be achieved. And the global position and the orientation of mobile robot can be known by only two land marks positions in image coordinate system. Finally, the adoption of visual information in path tracking problem makes visual servo control.

  • PDF

Design of Visual Servo Controller using Color Coordinate System Transformation in Mobile Robot

  • Noh, Chang-Kyun;Park, Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.591-595
    • /
    • 2000
  • In this paper color coordinate system transformation based visual servo controller has been considered Mobile robot always has a position error and an orientation error resulted from wheel slipping etc.. Even more, the errors have accumulative properties. So feedback from environments is important. In this paper by using color model faster land mark extraction can be achieved. And the global position and the orientation of mobile robot can be known by only two land mark positions in image coordinate system. Finally, the adoption of visual information in path tracking problem makes visual servo control.

  • PDF