• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.03 seconds

Presentation Control System using Vision Based Hand-Gesture Recognition (Vision 기반 손동작 인식을 활용한 프레젠테이션 제어 시스템)

  • Lim, Kyoung-Jin;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.281-284
    • /
    • 2010
  • In this paper, we present Hand-gesture recognition for actual computing into color images from camera. Color images are binarization and labeling by using the YCbCr Color model. Respectively label area seeks the center point of the hand from to search Maximum Inscribed Circle which applies Voronoi-Diagram. This time, searched maximum circle and will analyze the elliptic ingredient which is contiguous so a hand territory will be able to extract. we present the presentation contral system using elliptic element and Maximum Inscribed Circle. This algorithm is to recognize the various environmental problems in the hand gesture recognition in the background objects with similar colors has the advantage that can be effectively eliminated.

  • PDF

Propeller Display Using POV Phenomenon (POV 현상을 이용한 프로펠러 디스플레이)

  • Dong-Uk, Lee;Doo-Young, Ga;Dong-Ho, Lee;Yong-Wook, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1181-1186
    • /
    • 2022
  • In this study, we have researched for a high-efficiency display with low power, less complicated configuration, and more attractive features than using conventional displays (CRT, LCD, LED, etc.) by manufacturing a propeller display using the POV(Persistence of Vision) phenomenon. After setting the reference point using the Hall sensor, the channel recognition signal and voice recognition signal are transmitted to the display using Bluetooth through the mobile phone application created based on the App program, and the display performs different operations according to the commanded Bluetooth signal. Finally, it was confirmed that the desired information is expressed on the display screen at a motor speed of 1,030 rpm.

A Study on Emotion Recognition Systems based on the Probabilistic Relational Model Between Facial Expressions and Physiological Responses (생리적 내재반응 및 얼굴표정 간 확률 관계 모델 기반의 감정인식 시스템에 관한 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.513-519
    • /
    • 2013
  • The current vision-based approaches for emotion recognition, such as facial expression analysis, have many technical limitations in real circumstances, and are not suitable for applications that use them solely in practical environments. In this paper, we propose an approach for emotion recognition by combining extrinsic representations and intrinsic activities among the natural responses of humans which are given specific imuli for inducing emotional states. The intrinsic activities can be used to compensate the uncertainty of extrinsic representations of emotional states. This combination is done by using PRMs (Probabilistic Relational Models) which are extent version of bayesian networks and are learned by greedy-search algorithms and expectation-maximization algorithms. Previous research of facial expression-related extrinsic emotion features and physiological signal-based intrinsic emotion features are combined into the attributes of the PRMs in the emotion recognition domain. The maximum likelihood estimation with the given dependency structure and estimated parameter set is used to classify the label of the target emotional states.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Real time detection and recognition of traffic lights using component subtraction and detection masks (성분차 색분할과 검출마스크를 통한 실시간 교통신호등 검출과 인식)

  • Jeong Jun-Ik;Rho Do-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.65-72
    • /
    • 2006
  • The traffic lights detection and recognition system is an essential module of the driver warning and assistance system. A method which is a color vision-based real time detection and recognition of traffic lights is presented in this paper This method has four main modules : traffic signals lights detection module, traffic lights boundary candidate determination module, boundary detection module and recognition module. In traffic signals lights detection module and boundary detection module, the color thresholding and the subtraction value of saturation and intensity in HSI color space and detection probability mask for lights detection are used to segment the image. In traffic lights boundary candidate determination module, the detection mask of traffic lights boundary is proposed. For the recognition module, the AND operator is applied to the results of two detection modules. The input data for this method is the color image sequence taken from a moving vehicle by a color video camera. The recorded image data was transformed by zooming function of the camera. And traffic lights detection and recognition experimental results was presented in this zoomed image sequence.

Modular Neural Network Recognition System for Robot Endeffector Recognition (로봇 Endeffector 인식을 위한 다중 모듈 신경회로망 인식 시스템)

  • 신진욱;박동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.618-626
    • /
    • 2004
  • In this paper, we describe a robot endeffector recognition system based on a Modular Neural Networks (MNN). The proposed recognition system can be used for vision system which track a given object using a sequence of images from a camera unit. The main objective to achieve with the designed MNN is to precisely recognize the given robot endeffector and to minimize the processing time. Since the robot endeffector can be viewed in many different shapes in 3- D space, a MNN structure, which contains a set of feedforwared neural networks, can be more attractive in recognizing the given object. Each single neural network learns the endeffector with a cluster of training patterns. The training MNN patterns for a neural network share the similar characteristics so that they can be easily trained. The trained UM is les s sensitive to noise and it shows the better performance in recognizing the endeffector. The recognition rate of MNN is enhanced by 14% over the single neural network. A vision system with the MNN can precisely recognize the endeffector and place it at the center of a display for a remote operator.

Vision-Based Roadway Sign Recognition

  • Jiang, Gang-Yi;Park, Tae-Young;Hong, Suk-Kyo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In this paper, a vision-based roadway detection algorithm for an automated vehicle control system, based on roadway sign information on roads, is proposed. First, in order to detect roadway signs, the color scene image is enhanced under hue-invariance. Fuzzy logic is employed to simplify the enhanced color image into a binary image and the binary image is morphologically filtered. Then, an effective algorithm of locating signs based on binary rank order transform (BROT) is utilized to extract signs from the image. This algorithm performs better than those previously presented. Finally, the inner shapes of roadway signs with curving roadway direction information are recognized by neural networks. Experimental results show that the new detection algorithm is simple and robust, and performs well on real sign detection. The results also show that the neural networks used can exactly recognize the inner shapes of signs even for very noisy shapes.

  • PDF

Segmentation of Polygons with Different Colors and its Application to the Development of Vision-based Tangram Puzzle Game (다른 색으로 구성된 다각형들의 분할과 이를 이용한 영상 인식 기반 칠교 퍼즐 놀이 개발)

  • Lee, Jihye;Yi, Kang;Kim, Kyungmi
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1890-1900
    • /
    • 2017
  • Tangram game consists of seven pieces of polygons such as triangle, square, and parallelogram. Typical methods of image processing for object recognition may suffer from the existence of side thickness and shadow of the puzzle pieces that are dependent on the pose of 3D-shaped puzzle pieces and the direction of light sources. In this paper, we propose an image processing method that recognizes simple convex polygon-shaped objects irrespective of thickness and pose of puzzle objects. Our key algorithm to remove the thick side of piece of puzzle objects is based on morphological operations followed by logical operations with edge image and background image. By using the proposed object recognition method, we are able to implement a stable tangram game applications designed for tablet computers with front camera. As the experimental results, recognition rate is about 86 percent and recognition time is about 1ms on average. It shows the proposed algorithm is fast and accurate to recognize tangram blocks.

YOLO based Optical Music Recognition and Virtual Reality Content Creation Method (YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법)

  • Oh, Kyeongmin;Hong, Yoseop;Baek, Geonyeong;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.80-90
    • /
    • 2021
  • Using optical music recognition technology based on deep learning, we propose to apply the results derived to VR games. To detect the music objects in the music sheet, the deep learning model used YOLO v5, and Hough transform was employed to detect undetected objects, modifying the size of the staff. It analyzes and uses BPM, maximum number of combos, and musical notes in VR games using output result files, and prevents the backlog of notes through Object Pooling technology for resource management. In this paper, VR games can be produced with music elements derived from optical music recognition technology to expand the utilization of optical music recognition along with providing VR contents.

Ship Number Recognition Method Based on An improved CRNN Model

  • Wenqi Xu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.740-753
    • /
    • 2023
  • Text recognition in natural scene images is a challenging problem in computer vision. The accurate identification of ship number characters can effectively improve the level of ship traffic management. However, due to the blurring caused by motion and text occlusion, the accuracy of ship number recognition is difficult to meet the actual requirements. To solve these problems, this paper proposes a dual-branch network based on the CRNN identification network. The network couples image restoration and character recognition. The CycleGAN module is used for blur restoration branch, and the Pix2pix module is used for character occlusion branch. The two are coupled to reduce the impact of image blur and occlusion. Input the recovered image into the text recognition branch to improve the recognition accuracy. After a lot of experiments, the model is robust and easy to train. Experiments on CTW datasets and real ship maps illustrate that our method can get more accurate results.