Journal of the Korean Society for Precision Engineering
/
v.22
no.4
/
pp.121-127
/
2005
There is a necessity for the communication between intelligent robots and human beings because of wide spread use of them. Gesture recognition is currently being studied in regards to better conversing. On the basis of previous research, however, the gesture recognition algorithms appear to require not only complicated algorisms but also separate training process for high recognition rates. This study suggests a gesture recognition algorithm based on computer vision system, which is relatively simple and more efficient in recognizing various human gestures. After tracing the hand gesture using a marker, direction changes of the gesture trajectory were analyzed to determine the simple gesture code that has minimal information to recognize. A map is developed to recognize the gestures that can be expressed with different gesture codes. Through the use of numerical and geometrical trajectory, the advantages and disadvantages of the suggested algorithm was determined.
Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.
IEIE Transactions on Smart Processing and Computing
/
v.4
no.4
/
pp.281-290
/
2015
Human action recognition from a video scene has remained a challenging problem in the area of computer vision and pattern recognition. The development of the low-cost RGB depth camera (RGB-D) allows new opportunities to solve the problem of human action recognition. In this paper, we present a comprehensive review of recent approaches to human action recognition based on depth maps, skeleton joints, and other hybrid approaches. In particular, we focus on the advantages and limitations of the existing approaches and on future directions.
Journal of Korea Society of Digital Industry and Information Management
/
v.8
no.2
/
pp.31-40
/
2012
Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.6
/
pp.2767-2780
/
2016
Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.
Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.
Journal of the Korea Society of Computer and Information
/
v.13
no.3
/
pp.99-106
/
2008
Recently, digital music retrieval is using in many fields (Web portal. audio service site etc). In existing fields, Meta data of music are used for digital music retrieval. If Meta data are not right or do not exist, it is hard to get high accurate retrieval result. Contents based information retrieval that use music itself are researched for solving upper problem. In this paper, we propose Same music recognition method using similarity measurement. Feature data of digital music are extracted from waveform of music using Simplified MFCC (Mel Frequency Cepstral Coefficient). Similarity between digital music files are measured using DTW (Dynamic time Warping) that are used in Vision and Speech recognition fields. We success all of 500 times experiment in randomly collected 1000 songs from same genre for preying of proposed same music recognition method. 500 digital music were made by mixing different compressing codec and bit-rate from 60 digital audios. We ploved that similarity measurement using DTW can recognize same music.
Kim, Heeyoung;Hong, Hotak;Ryu, Gihwan;Kim, Dongmin
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.100-105
/
2021
Contactless service is rapidly emerging as a new growth strategy due to consumers who are reluctant to the face-to-face situation in the global pandemic of coronavirus disease 2019 (COVID-19), and various technologies are being developed to support the fast-growing contactless service market. In particular, the restaurant industry is one of the most desperate industrial fields requiring technologies for contactless service, and the representative technical case should be a kiosk, which has the advantage of reducing labor costs for the restaurant owners and provides psychological relaxation and satisfaction to the customer. In this paper, we propose a solution to the restaurant's store operation through the unmanned kiosk using a state-of-the-art artificial intelligence (AI) technology of image recognition. Especially, for the products that do not have barcodes in bakeries, fresh foods (fruits, vegetables, etc.), and autonomous restaurants on highways, which cause increased labor costs and many hassles, our proposed system should be very useful. The proposed system recognizes products without barcodes on the ground of image-based AI algorithm technology and makes automatic payments. To test the proposed system feasibility, we established an AI vision system using a commercial camera and conducted an image recognition test by training object detection AI models using donut images. The proposed system has a self-learning system with mismatched information in operation. The self-learning AI technology allows us to upgrade the recognition performance continuously. We proposed a fully automated payment system with AI vision technology and showed system feasibility by the performance test. The system realizes contactless service for self-checkout in the restaurant business area and improves the cost-saving in managing human resources.
Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.6_2
/
pp.643-651
/
2012
Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.368-391
/
2018
Face recognition (FR) with a single sample per person (SSPP) is common in real-world face recognition applications. In this scenario, it is hard to predict intra-class variations of query samples by gallery samples due to the lack of sufficient training samples. Inspired by the fact that similar faces have similar intra-class variations, we propose a virtual sample generating algorithm called k nearest neighbors based virtual sample generating (kNNVSG) to enrich intra-class variation information for training samples. Furthermore, in order to use the intra-class variation information of the virtual samples generated by kNNVSG algorithm, we propose image set based multimanifold discriminant learning (ISMMDL) algorithm. For ISMMDL algorithm, it learns a projection matrix for each manifold modeled by the local patches of the images of each class, which aims to minimize the margins of intra-manifold and maximize the margins of inter-manifold simultaneously in low-dimensional feature space. Finally, by comprehensively using kNNVSG and ISMMDL algorithms, we propose k nearest neighbor virtual image set based multimanifold discriminant learning (kNNMMDL) approach for single sample face recognition (SSFR) tasks. Experimental results on AR, Multi-PIE and LFW face datasets demonstrate that our approach has promising abilities for SSFR with expression, illumination and disguise variations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.