• Title/Summary/Keyword: vision-based method

Search Result 1,469, Processing Time 0.03 seconds

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

The Architecture of the Vision-based Monitoring system for Urban Transit Visual (영상기반 도시철도 모니터링 시스템 구축방안 연구)

  • An, Tae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.229-231
    • /
    • 2007
  • The CCTV, closed circuit television, system is the most popular method to monitor some specific area. The CCTV-based monitoring system is composed of a lot of cameras installed the areas, and monitors to display the vision through the cameras. However, these systems have limitations to prevent some problems or to cope with the problems promptly, because they can carry out only the function that shows us the analogue images of the cameras. Especially, urban transit service area is the space where many people crowd in all at the same time and the space is not only wide but also distributed sporadically. This paper presents the efficient plan for video-based monitoring system to monitor urban transit service area. To build the efficient monitoring system, it is necessary to devide the monitoring area to appropriate sectors that should be composed to be displayed at a time. If the proposed method is used to construct the video-based monitoring system, the operating officers in the urban transit have the more direct and real images.

  • PDF

A Study on the Forming Failure Inspection of Small and Multi Pipes (소형 다품종 파이프의 실시간 성형불량 검사 시스템에 관한 연구)

  • 김형석;이회명;이병룡;양순용;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

Multi-robot Formation based on Object Tracking Method using Fisheye Images (어안 영상을 이용한 물체 추적 기반의 한 멀티로봇의 대형 제어)

  • Choi, Yun Won;Kim, Jong Uk;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 2013
  • This paper proposes a novel formation algorithm of identical robots based on object tracking method using omni-directional images obtained through fisheye lenses which are mounted on the robots. Conventional formation methods of multi-robots often use stereo vision system or vision system with reflector instead of general purpose camera which has small angle of view to enlarge view angle of camera. In addition, to make up the lack of image information on the environment, robots share the information on their positions through communication. The proposed system estimates the region of robots using SURF in fisheye images that have $360^{\circ}$ of image information without merging images. The whole system controls formation of robots based on moving directions and velocities of robots which can be obtained by applying Lucas-Kanade Optical Flow Estimation for the estimated region of robots. We confirmed the reliability of the proposed formation control strategy for multi-robots through both simulation and experiment.

Vision-based Predictive Model on Particulates via Deep Learning

  • Kim, SungHwan;Kim, Songi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2107-2115
    • /
    • 2018
  • Over recent years, high-concentration of particulate matters (e.g., a.k.a. fine dust) in South Korea has increasingly evoked considerable concerns about public health. It is intractable to track and report $PM_{10}$ measurements to the public on a real-time basis. Even worse, such records merely amount to averaged particulate concentration at particular regions. Under this circumstance, people are prone to being at risk at rapidly dispersing air pollution. To address this challenge, we attempt to build a predictive model via deep learning to the concentration of particulates ($PM_{10}$). The proposed method learns a binary decision rule on the basis of video sequences to predict whether the level of particulates ($PM_{10}$) in real time is harmful (>$80{\mu}g/m^3$) or not. To our best knowledge, no vision-based $PM_{10}$ measurement method has been proposed in atmosphere research. In experimental studies, the proposed model is found to outperform other existing algorithms in virtue of convolutional deep learning networks. In this regard, we suppose this vision based-predictive model has lucrative potentials to handle with upcoming challenges related to particulate measurement.

Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task (얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법)

  • Jang, Min Woo;Kim, Jae Myung;Jang, Wan Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.

An Interactive Aerobic Training System Using Vision and Multimedia Technologies

  • Chalidabhongse, Thanarat H.;Noichaiboon, Alongkot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1191-1194
    • /
    • 2004
  • We describe the development of an interactive aerobic training system using vision-based motion capture and multimedia technology. Unlike the traditional one-way aerobic training on TV, the proposed system allows the virtual trainer to observe and interact with the user in real-time. The system is composed of a web camera connected to a PC watching the user moves. First, the animated character on the screen makes a move, and then instructs the user to follow its movement. The system applies a robust statistical background subtraction method to extract a silhouette of the moving user from the captured video. Subsequently, principal body parts of the extracted silhouette are located using model-based approach. The motion of these body parts is then analyzed and compared with the motion of the animated character. The system provides audio feedback to the user according to the result of the motion comparison. All the animation and video processing run in real-time on a PC-based system with consumer-type camera. This proposed system is a good example of applying vision algorithms and multimedia technology for intelligent interactive home entertainment systems.

  • PDF

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

High Speed Self-Adaptive Algorithms for Implementation in a 3-D Vision Sensor (3-D 비젼센서를 위한 고속 자동선택 알고리즘)

  • Miche, Pierre;Bensrhair, Abdelaziz;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this paper, we present an original stereo vision system which comprises two process: 1. An image segmentation algorithm based on new concept called declivity and using automatic thresholds. 2. A new stereo matching algorithm based on an optimal path search. This path is obtained by dynamic programming method which uses the threshold values calculated during the segmentation process. At present, a complete depth map of indoor scene only needs about 3 s on a Sun workstation IPX, and this time will be reduced to a few tenth of second on a specialised architecture based on several DSPs which is currently under consideration.

  • PDF