• Title/Summary/Keyword: vision-based method

Search Result 1,449, Processing Time 0.031 seconds

Image alignment method based on CUDA SURF for multi-spectral machine vision application (다중 스펙트럼 머신비전 응용을 위한 CUDA SURF 기반의 영상 정렬 기법)

  • Maeng, Hyung-Yul;Kim, Jin-Hyung;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1041-1051
    • /
    • 2014
  • In this paper, we propose a new image alignment technique based on CUDA SURF in order to solve the initial image alignment problem that frequently occurs in machine vision applications. Machine vision systems using multi-spectral images have recently become more common for solving various decision problems that cannot be performed by the human vision system. These machine vision systems mostly use markers for the initial image alignment. However, there are some applications where the markers cannot be used and the alignment techniques have to be changed whenever their markers are changed. In order to solve these problems, we propose a new image alignment method for multi-spectral machine vision applications based on SURF extracting image features without depending on markers. In this paper, we propose an image alignment method that obtains a sufficient number of feature points from multi-spectral images using SURF and removes outlier iteratively based on a least squares method. We further propose an effective preliminary scheme for removing mismatched feature point pairs that may affect the overall performance of the alignment. In addition, we reduce the execution time by implementing the proposed method using CUDA based on GPGPU in order to guarantee real-time operation. Simulation results show that the proposed method is able to align images effectively in applications where markers cannot be used.

A Study on the Visual Servoing of Autonomous Mobile Inverted Pendulum (자율주행 모바일 역진자의 비주얼서보잉에 대한 연구)

  • Lee, Junmin;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.240-247
    • /
    • 2013
  • This paper proposes an optimal three-dimensional coordinate implementation of the vision sensor using two CCD cameras. The PBVS (Position based visual servoing) is implemented using the positional information obtained from images. Stereo vision by PBVS method that has enhanced every frame using calibration parameters is effective in the distance calculation. The IBVS (Image based visual servoing) is also implemented using the difference between reference and obtained images. Stereo vision by IBVS method calculates the distance using rotation angle of motors that correspond eyes and neck without enhanced images. The PBVS method is compared with the IBVS method in terms of advantages, disadvantages, computing time, and performances. Finally, the IBVS method is applied for the dual arm manipulator on the mobile inverted pendulum. The autonomous mobile inverted pendulum is successfully demonstrated using the center of the manipulator's mass.

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

A Design of Vector Quantization Optimal Fuzzy Systems for Vision-Based Robot Control Systems (영상 기반 로붓 제어 시스템을 위한 벡터 양자화 최적 퍼지 시스템 설계)

  • Kim, Young-Joong;Kim, Young-Rak;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2447-2449
    • /
    • 2003
  • In this paper, optimal fuzzy systems using vector quantization and fuzzy logic controllers are designed for vision-based robot control systems. The complexity of the optimal fuzzy system for vision-based control systems is so great that it can not be applied to real vision-based control systems or it can not be useful, because there are so many input-output pairs. Therefore, we generally use the clustering of input-output pairs, in order to reduce the complexity of optimal fuzzy systems. To increase the effectiveness of the clustering, a vector quantization clustering method is proposed. In order to verify the effectiveness of the proposed method experimentally, it is applied to a vision-based arm robot control system.

  • PDF

Scenario based Information Technology Future Strategy approach to Engineering (시나리오기반 IT 미래전략연구의 공학적 접근법)

  • Ryu, Dong-Hyun;Park, Jeong-Yong;Lee, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2171-2179
    • /
    • 2010
  • Currently, advanced countries are absorbed in vision research related to 'Technology Convergence', which is a 21 century Megatrend. They establish Technology Convergence strategy based on information and communication technology (ICT), and vision research that utilizes the scenario method is actively progressing. In this paper, scenario-based vision research case study using WWRF (Wireless World Research Forum), AmI (Ambient Intelligence), and mITF (mobile IT Forum) is conducted. The proposed 'engineering scenario method' is based on the case study results. Therefore, a future strategy study using the proposed scenario-based method is analyzed. The 'engineering scenario method' can provide a new direction in vision strategy research.

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

Development of Web Based Mold Discrimination System using the Matching Process for Vision Information and CAD DB (비전정보와 캐드DB 매칭을 통한 웹 기반 금형 판별 시스템 개발)

  • Choi, Jin-Hwa;Jeon, Byung-Cheol;Cho, Myeong-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.37-43
    • /
    • 2006
  • The target of this study is development of web based mold discrimination system by matching vision information with CAD database. The use of 2D vision image makes possible speedy mold discrimination from many databases. The image processing such as preprocessing, cleaning is done for obtaining vivid image with object information. The web-based system is a program which runs to exchange messages between a server and a client by making of ActiveX control and the result of mold discrimination is shown on web-browser. For effective feature classification and extraction, signature method is used to make sensible information from 2D data. As a result, the possibility of proposed system is shown as matching feature information from vision image with CAD database samples.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Position Control of Robot Manipulator based on stereo vision system (스테레오 비젼에 기반한 6축 로봇의 위치 결정에 관한 연구)

  • 조환진;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.590-593
    • /
    • 2001
  • In this paper we describe the 6-axes robot's position determination using a stereo vision and an image based control method. When use a stereo vision, it need a additional time to compare with mono vision system. So to reduce the time required, we use the stereo vision not image Jacobian matrix estimation but depth estimation. Image based control is not needed the high-precision of camera calibration by using a image Jacobian. The experiment is executed as devide by two part. The first is depth estimation by stereo vision and the second is robot manipulator's positioning.

  • PDF

Vision-based Method for Estimating Cable Tension Using the Stay Cable Shape (사장재 케이블 형태를 이용하여 케이블 장력을 추정하는 영상기반 방법)

  • Jin-Soo Kim;Jae-Bong Park;Deok-Keun Lee;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.98-106
    • /
    • 2024
  • Due to advancements in construction technology and analytical tools, an increasing number of cable-stayed bridges have been designed and constructed in recent years. A cable is a structural element that primarily transmits the main load of a cable-stayed bridge and plays the most crucial role in reflecting the overall condition of the entire bridge system. In this study, a vision-based method was applied to estimate the tension of the stay cables located at a long distance. To measure the response of a cable using a vision-based method, it is necessary to install feature points or targets on the cable. However, depending on the location of the point to be measured, there may be no feature points in the cable, and there may also be limitations in installing the target on the cable. Hence, it is necessary to find a way to measure cable response that overcomes the limitations of existing vision-based methods. This study proposes a method for measuring cable responses by utilizing the characteristics of cable shape. The proposed method involved extracting the cable shape from the acquired image and determining the center of the extracted cable shape to measure the cable response. The extracted natural frequencies of the vibration mode were obtained using the measured responses, and the tension was estimated by applying them to the vibration method. To verify the reliability of the vision-based method, cable images were obtained from the Hwatae Bridge in service under ambient vibration conditions. The reliability of the method proposed in this study was confirmed by applying it to the vibration method using a vision-based approach, resulting in estimated tensions with an error of less than 1% compared to tensions estimated using an accelerometer.