• Title/Summary/Keyword: vision-based inspection

Search Result 227, Processing Time 0.023 seconds

A Multiple Threshold Selection Algorithm Based on Maximum Fuzzy Entropy for the Final Inspection of Flip Chip BGA (플립 칩 BGA 최종 검사를 위한 최대퍼지엔트로피 기반의 다중임계값 선정 알고리즘)

  • 김경범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Quality control is essential to the final product in BGA-type PCB fabrication. So, many automatic vision systems have been developed to achieve speedy, low cost and high quality inspection. A multiple threshold selection algorithm is a very important technique for machine vision based inspection. In this paper, an inspected image is modeled by using fuzzy sets and then the parameters of specified membership functions are estimated to be in maximum fuzzy entropy with the probability of the fuzzy sets, using the exhausted search method. Fuzzy c-partitions with the estimated parameters are automatically generated, and then multiple thresholds are selected as the crossover points of the fuzzy sets that form the estimated fuzzy partitions. Several experiments related to flip chip BGA images show that the proposed algorithm outperforms previous ones using both entropy and variance, and also can be successfully applied to AVI systems.

Inspection of Automotive Oil-Seals Using Artificial Neural Network and Vision System (인공신경망과 비전 시스템을 이용한 자동차용 오일씰의 검사)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.83-88
    • /
    • 2004
  • The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.

A Study of Inspection of Weld Bead Defects using Laser Vision Sensor (레이저 비전 센서를 이용한 용접비드의 외부결함 검출에 관한 연구)

  • 이정익;이세헌
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.53-60
    • /
    • 1999
  • Conventionally, CCD camera and vision sensor using the projected pattern of light is generally used to inspect the weld bead defects. But with this method, a lot of time is needed for image preprocessing, stripe extraction and thinning, etc. In this study, laser vision sensor using the scanning beam of light is used to shorten the time required for image preprocessing. The software for deciding whether the weld bead is in proper shape or not in real time is developed. The criteria are based upon the classification of imperfections in metallic fusion welds(ISO 6520) and limits for imperfections(ISO 5817).

  • PDF

Development of an Inspection System for Car Seat Bottom Cushion Frame Using Machine Vision (머신 비전을 이용한 카 시트 쿠션 프레임 검사 시스템 개발)

  • Tucit, Joselito;Jung, Ho;Jang, Bong-Choon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.253-255
    • /
    • 2007
  • The increasing requirement for consistency and quality in the automotive industry started the development of a Machine Vision Inspection System (MVIS) for a car seat bottom cushion frame with the goal of providing a higher precision Inspection System with minimal components and less human intervention. The modifications made to an existing PC-based MVIS were shown to improve the accuracy and precision of the system. By using four monochrome cameras, the working distance was lowered and the image distortions were lessened without resorting to extensive image processing. The inspection scripts were evaluated if it could recognize good and bad products and were shown to be robust and able to reach an acceptable level of precision. It was also shown that the amount of human interaction was lessened.

  • PDF

Window defects identification method by using photos collected through the pre-handover inspection of multifamily housing (창호 하자 식별을 위한 컴퓨터 비전 기반 결함 탐지 방법)

  • Lee, Subin;Lee, Seulbi
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • This study proposed how to identify window defects by using photos uploaded by occupants during the pre-handover inspection of mulch-family housing. A total of 1168 door images were acquired to generate training data and validation data. Subsequently, through the proposed algorithms, every pixel in images labeled a door was binarized using the OTSU threshold, and then dark pixels were identified as defects. Experimental results demonstrated that our computer vision-based defects identification method detects the door with a recall of 57.9%, and door defects with 63.6%. Although it is still a challenge to automatically identify building defects because of the distortion and brightness of photos, this study has the potential to support better defects management. Ultimately, the improved pre-handover inspection may lead to increased customer satisfaction.

Wavelet Analysis to Real-Time Fabric Defects Detection in Weaving processes

  • Kim, Sung-Shin;Bae, Hyeon;Jung, Jae-Ryong;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • This paper introduces a vision-based on-line fabric inspection methodology of woven textile fabrics. Current procedure for determination of fabric defects in the textile industry is performed by human in the off-line stage. The advantage of the on-line inspection system is not only defect detection and identification, but also 벼ality improvement by a feedback control loop to adjust set-points. The proposed inspection system consists of hardware and software components. The hardware components consist of CCD array cameras, a frame grabber and appropriate illumination. The software routines capitalize upon vertical and horizontal scanning algorithms characteristic of a particular deflect. The signal to noise ratio (SNR) calculation based on the results of the wavelet transform is performed to measure any deflects. The defect declaration is carried out employing SNR and scanning methods. Test results from different types of defect and different style of fabric demonstrate the effectiveness of the proposed inspection system.

Design on Automatic Vision System for Fast Alternator Spool Inspection (알터네이터 스풀 고속 검사를 위한 자동화 비전시스템 설계)

  • Jang, Bong-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4145-4150
    • /
    • 2010
  • This research aims to design on an automatic machine vision system to replace eye inspection of alternator spool which is one of the key automotive parts. The alternator spool, plastic extrusion part would have various defects like unfinished, crack and burr. Through the design failure examples the optimized fast machine vision system will be designed to inspect all spools also focuses on the low cost machine for the middle sized company as 2'nd automotive supplier. 3-dimensional design softwares of Pro-Engineer & CATIA were used and the system were built based on the design. The system will contribute to satisfy the cycle time and can inspect each part in an absolutely accurate method, which is sufficient for industrial applications.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

An Automatic Inspection System Using Computer Vision (자동검사 시스템을 위한 컴퓨터 비젼의 연구)

  • Jang, Dong-Sik
    • IE interfaces
    • /
    • v.4 no.2
    • /
    • pp.43-51
    • /
    • 1991
  • A line search method is developed to locate all the conerpoints of 2-dimensional polygon images for inspection purposes. This optimization-based method is used to approximate a 2-D curved object by a polygon. This scheme is also developed for inspection of objects in industrial environment. The inspection includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image. The method proves to be computationally efficient and accurate for real time application.

  • PDF