• Title/Summary/Keyword: vision-based control

Search Result 683, Processing Time 0.032 seconds

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

A Study on Vision System for High Precision Alignment of Large LCD Flat Panel Display (LCD 대평판 고정밀 얼라인먼트를 위한 비전 시스템 연구)

  • Cho, Sung-Man;Song, Chun-Sam;Kim, Joon-Hyun;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.909-915
    • /
    • 2009
  • This work is to develop a vision system for high precision alignment between upper and lower plates required at the imprinting process of the large LCD flat panel. We compose a gantry-stage that has highly repeated accuracy for high precision alignment and achieves analysis about thermal transformations of stage itself. Position error in the stage is corrected by feedback control from the analysis. This system can confirm alignment mark of upper and lower plates by using two cameras at a time for the alignment of two plates. Pattern matching that uses geometric feature is proposed to consider the recognition problem for alignment mark of two plates. It is algorithm to correct central point and angle for the alignment from the recognized mark of upper and lower plates based on the special characteristics. At the alignment process, revision for error position is performed through Look and Move techniques.

Autonomous Landing on Small Bodies based on Discrete Sliding Mode Control (이산 슬라이딩 모드 제어를 이용한 소천체 자율 착륙 기법)

  • Lee, Juyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.647-661
    • /
    • 2017
  • This paper presents a robust method for autonomously landing on small bodies. Autonomous landing is accomplished by generating and following reference position and attitude profiles. The position and attitude tracking controllers are based on discrete sliding mode control, which explicitly treats the discrete and impulsive natures of thruster operation. Vision-based inertial navigation is used for autonomous navigation for landing. Numerical simulation is carried out to evaluate the performance of the proposed method in a realistic situation with environmental uncertainties.

Design of Fuzzy Controller Based on Empirical Knowledge (실험적 지식에 기초한 퍼지제어기 설계)

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2296-2298
    • /
    • 2000
  • Fuzzy control has been researched for application of industrial processes which have no accurate mathematical model and could not controlled by conventional methods because of a lack of quantitative input-output data. Intelligent control approach based on fuzzy logic could directly reflex human thinking and natural language to controller comparing with conventional methods. In this paper, fuzzy controller is implemented to acquire operator's knowledge. The tested system is constructed for sending a ball to the goal position using wind from two DC motors in the path. This system contains non-linearity and uncertainty because of the characteristic of aerodynamics inside the path. Ball position is measured by a vision camera. The system used in this experiment could be hardly modeled by mathematic methods and could not be easily controlled by linear control manners. The controller, in this paper is designed based on the input-output data and experimental knowledge obtained by trials.

  • PDF

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

A Framework for Cognitive Agents

  • Petitt, Joshua D.;Braunl, Thomas
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.229-235
    • /
    • 2003
  • We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-board sensors, including vision, and does not rely on global positioning systems The on-board embedded controller is sufficient to analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, map generation, or providing intelligent group behavior. Not being limited to playing the game of soccer and being completely autonomous, we are also looking at a number of other interesting scenarios. The robots can communicate with each other, e.g. for exchanging positions, information about objects or just the local states they are currently in (e.g. sharing their current objectives with other robots in the group). We are particularly interested in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

A design of window configuration for stereo matching (스테레오 매칭을 위한 Window 형상 설계)

  • 강치우;정영덕;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1175-1180
    • /
    • 1991
  • The purpose of this paper is to improve the matching accuracy in identifying corresponding points in the area-based matching for the processing of stereo vision. For the selection of window size, a new method is proposed based on frequency domain analysis. The effectiveness of the proposed method is confirmed through a series of experiments. To overcome disproportionate distortion in stereo image pair, a new matching method using the warped window is also proposed. In the algorithm, the window is warped according to imaging geometry. Experiments on a synthetic image show that the matching accuracy is improved by 14.1% and 4.2% over the rectangular window method and image warping method each.

  • PDF