• 제목/요약/키워드: vision engine

검색결과 55건 처리시간 0.029초

머신비젼 기반의 엔진마운트 부품 자동공급시스템 (An Automated Machine-Vision-based Feeding System for Engine Mount Parts)

  • 이형근;이문규
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.177-185
    • /
    • 2001
  • This paper describes a machine-vision-based prototype system for automatically feeding engine-mount parts to a swaging machine which assembles engine mounts. The system developed consists of a robot, a feeding device with two cylinders and two photo sensors, and a machine vision system. The machine vision system recognizes the type of different parts being fed from the feeding device and estimates the angular difference between the inner-hole center of the part and the point predetermined for assembling. The robot then picks up each part and rotated it through the estimated angle such that the parts are well assembled together as specified. An algorithm has been developed to recognize different part types and estimate the angular difference. The test results obtained for a set of real specimens indicate that the algorithm performs well enough to be applied to prototype system.

  • PDF

프레스 자동화 공정을 위한 비전 기반 블랭크 정렬 장치 개발 (Development of a Vision-based Blank Alignment Unit for Press Automation Process)

  • 오종규;김대식;김수종
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.65-69
    • /
    • 2015
  • A vision-based blank alignment unit for a press automation line is introduced in this paper. A press is a machine tool that changes the shape of a blank by applying pressure and is widely used in industries requiring mass production. In traditional press automation lines, a mechanical centering unit, which consists of guides and ball bearings, is employed to align a blank before a robot inserts it into the press. However it can only align limited sized and shaped of blanks. Moreover it cannot be applied to a process where more than two blanks are simultaneously inserted. To overcome these problems, we developed a press centering unit by means of vision sensors for press automation lines. The specification of the vision system is determined by considering information of the blank and the required accuracy. A vision application S/W with pattern recognition, camera calibration and monitoring functions is designed to successfully detect multiple blanks. Through real experiments with an industrial robot, we validated that the proposed system was able to align various sizes and shapes of blanks, and successfully detect more than two blanks which were simultaneously inserted.

머신비전을 이용한 밸브어셈블리의 3차원 마멸특성 분석 (3D Wear Analysis of Valve Assemblies by Using the Machine Vision)

  • 박창우;정성종
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.496-504
    • /
    • 2006
  • Wear of engine valves and seat inserts is a major factor affecting engine performance. In order to improve quality and life of valve assemblies, wear mechanism and 3-D surface topography should be analyzed according to operating conditions of the engine. After developing an engine simulator that generates valve speed up to 90Hz and temperature up to $900^{\circ}C$ as well as controls test load, wear experiments have been conducted for two different engine speeds as 10Hz and 25Hz. In order to observe the wear characteristics and monitor surface conditions of the valve assemblies, a cost-effective 3-D wear analysis system based on the shape from focus(SFF) and machine vision has been fabricated in this paper. 3-D surface topography of the valve assemblies has been analyzed to understand the wear behavior according to operating conditions of the engine. Consequently, wear volume of the valve assemblies is quantized by using the developed 3-D wear analysis system.

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF

영상처리기법에 의한 실시간 엔진 품질검사시스템 (Real Time Engine Quality Inspection System by Image Processing)

  • 정원;신현명
    • 대한산업공학회지
    • /
    • 제24권3호
    • /
    • pp.397-406
    • /
    • 1998
  • The purpose of this research is to develop an integrated quality inspection system using machine vision technology in the automotive engine assembly process. The system makes it possible for the inspected data to be entered directly from the machine vision system into the developed system without the need for intermediate operations. Such direct entry enables prompt corrective actions against process problems. An IVP-150 machine vision board is installed an the PC for image processing, and a template matching technology is implemented to precisely verify quality factors. The developed system is successfully installed in a manufacturing process, and it showed robustness to the problems of noise, distortion, and orientation.

  • PDF

실린더 라이너 오일그루브 가공 로봇 시스템 개발 (Development of a Grinding Robot System for the Engine Cylinder Liner's Oil Groove)

  • 노태양;이윤식;정창욱;오용출
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.614-619
    • /
    • 2009
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

실린더 라이너 오일그루브 가공 로봇 시스템 개발 (Development of a grinding robot system for the oil groove of the engine cylinder liner)

  • 노태양;이윤식;정창욱;이지형;오용출
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1075-1080
    • /
    • 2008
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

  • PDF

Embedded Platform을 기반으로 하는 Vision Box 설계 (Design Vision Box base on Embedded Platform)

  • 김판규;황태문;박상수;이종혁
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.1103-1106
    • /
    • 2005
  • 본 연구의 목적은 카메라를 통하여 획득한 이미지 정보를 캡쳐 후, 이를 분석하여 물체의 동작을 인식하는 Vision Box를 설계하는데 목적이 있다. 본 연구는 고객 즉, 사용자의 요구조건을 최대한 반영하여 구현하고자 하였다. 구현하고자 하는 Vision Box 시스템은 특별한 외부의 부가적인 센서를 사용하지 않고 카메라를 통하여 들어오는 화상 정보만을 분석하여 물체를 식별할 수 있도록 하였다. 그리고 PLC와의 통신과 원격지에서 Vision Box를 제어할 수 있는 방법도 지원할 수 있도록 하였다. 본 연구에서 제안한 Vision Box의 성능을 자동차 엔진패턴 검사를 통하여 검증할 수 있었으며 제안한 Vision Box 시스템이 다양한 산업분야에 적용될 수 있을 것이라 생각된다.

  • PDF

지능형 자동차용 고성능 영상인식 엔진 (High-Performance Vision Engine for Intelligent Vehicles)

  • 여준기;천익재;석정희;노태문
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.535-542
    • /
    • 2013
  • 본 논문에서는 고속 및 고인식률의 성능을 갖는 영상인식 엔진 구조를 제안한다. 본 엔진은 2단계의 특징점 추출 및 분류 알고리즘을 수행하여 자동차와 보행자를 인식할 수 있다. 엔진의 인식률을 높이기 위해 HOG 특징점 값과 LBP 특징점 값을 같이 사용하여 알고리즘을 구성하였으며, 처리 속도를 높이기 위해 병렬 구조를 개선하여 하드웨어를 설계하였다. 실험결과를 통해 설계한 엔진이 초당 90프레임의 인식 처리가 가능하며 FPPW $10^{-4}$ 하에서 97.7%의 보행자 인식률을 가짐을 보인다.

센서기반 지능형 아크 용접 로봇 시스템의 동향 (Trends of Sensor-based Intelligent Arc Welding Robot System)

  • 정지훈;신현호;송영훈;김수종
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1051-1056
    • /
    • 2014
  • In this paper, we introduce an intelligent robotic arc welding system which exploits sensors like as LVS (Laser Vision Sensor), Hall effect sensor, voltmeter and so on. The use of industrial robot is saturated because of its own limitation, and one of the major limitations is that industrial robot cannot recognize the environment. Lately, sensor-based environmental awareness research of the industrial robot is performed actively to overcome such limitation, and it can expand application field and improve productivity. We classify the sensor-based intelligent arc welding robot system by the goal and the sensing data. The goals can be categorized into detection of a welding start point, tracking of a welding line and correction of a torch deformation. The Sensing data can be categorized into welding data (i.e. current, voltage and short circuit detection) and displacement data (i.e. distance, position). This paper covers not only the explanation of the each category but also its advantage and limitation.