• Title/Summary/Keyword: vision artificial intelligence

Search Result 183, Processing Time 0.03 seconds

Study on object detection and distance measurement functions with Kinect for windows version 2 (키넥트(Kinect) 윈도우 V2를 통한 사물감지 및 거리측정 기능에 관한 연구)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1237-1242
    • /
    • 2017
  • Computer vision is coming more interesting with new imaging sensors' new capabilities which enable it to understand more its surrounding environment by imitating human vision system with artificial intelligence techniques. In this paper, we made experiments with Kinect camera, a new depth sensor for object detection and distance measurement functions, most essential functions in computer vision such as for unmanned or manned vehicles, robots, drones, etc. Therefore, Kinect camera is used here to estimate the position or the location of objects in its field of view and measure the distance from them to its depth sensor in an accuracy way by checking whether that the detected object is real object or not to reduce processing time ignoring pixels which are not part of real object. Tests showed promising results with such low-cost range sensor, Kinect camera which can be used for object detection and distance measurement which are fundamental functions in computer vision applications for further processing.

Optimizing CNN Structure to Improve Accuracy of Artwork Artist Classification

  • Ji-Seon Park;So-Yeon Kim;Yeo-Chan Yoon;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.9-15
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.

Analysis of Drought Vulnerable Areas using Neural-Network Algorithm (인공신경망 알고리즘을 활용한 가뭄 취약지역 분석)

  • Shin, Jeong Hoon;Kim, Jun Kyeong;Yeom, Min Kyo;Kim, Jin Pyeong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.329-340
    • /
    • 2021
  • Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.

Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products

  • Roshani, Mohammadmehdi;Phan, Giang;Faraj, Rezhna Hassan;Phan, Nhut-Huan;Roshani, Gholam Hossein;Nazemi, Behrooz;Corniani, Enrico;Nazemi, Ehsan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1277-1283
    • /
    • 2021
  • It is important for operators of poly-pipelines in petroleum industry to continuously monitor characteristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy gamma attenuation technique in combination with artificial neural network (ANN) is proposed to simultaneously determine type and amount of four different petroleum by-products. The detection system is composed of a dual energy gamma source, including americium-241 and barium-133 radioisotopes, and one 2.54 cm × 2.54 cm sodium iodide detector for recording the transmitted photons. Two signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the outputs.

Analyzing and Solving GuessWhat?! (GuessWhat?! 문제에 대한 분석과 파훼)

  • Lee, Sang-Woo;Han, Cheolho;Heo, Yujung;Kang, Wooyoung;Jun, Jaehyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • GuessWhat?! is a game in which two machine players, composed of questioner and answerer, ask and answer yes-no-N/A questions about the object hidden for the answerer in the image, and the questioner chooses the correct object. GuessWhat?! has received much attention in the field of deep learning and artificial intelligence as a testbed for cutting-edge research on the interplay of computer vision and dialogue systems. In this study, we discuss the objective function and characteristics of the GuessWhat?! game. In addition, we propose a simple solver for GuessWhat?! using a simple rule-based algorithm. Although a human needs four or five questions on average to solve this problem, the proposed method outperforms state-of-the-art deep learning methods using only two questions, and exceeds human performance using five questions.

Deep Learning for Classification of High-End Fashion Brand Sensibility (딥러닝을 통한 하이엔드 패션 브랜드 감성 학습)

  • Jang, Seyoon;Kim, Ha Youn;Lee, Yuri;Seol, Jinseok;Kim, Seongjae;Lee, Sang-goo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.1
    • /
    • pp.165-181
    • /
    • 2022
  • The fashion industry is creating innovative business models using artificial intelligence. To efficiently utilize artificial intelligence (AI), fashion data must be classified. Until now, such data have been classified focusing only on the objective properties of fashion products. Their subjective attributes, such as fashion brand sensibilities, are holistic and heuristic intuitions created by a combination of design elements. This study aims to improve the performance of collaborative filtering in the fashion industry by extracting fashion brand sensibility using computer vision technology. The image data set of fashion brand sensibility consists of high-end fashion brand photos that share sensibilities and communicate well in fashion. About 26,000 fashion photos of 11 high-end fashion brand sensibility labels have been collected from the 16FW to 21SS runway and 50 years of US Vogue magazines beginning from 1971. We use EfficientNet-B1 to establish the main architecture and fine-tune the network with ImageNet-ILSVRC. After training fashion brand sensibilities through deep learning, the proposed model achieved an F-1 score of 74% on accuracy tests. Furthermore, as a result of comparing AI machine and human experts, the proposed model is expected to be expanded to mass fashion brands.

Classification of Tabular Data using High-Dimensional Mapping and Deep Learning Network (고차원 매핑기법과 딥러닝 네트워크를 통한 정형데이터의 분류)

  • Kyeong-Taek Kim;Won-Du Chang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.119-124
    • /
    • 2023
  • Deep learning has recently demonstrated conspicuous efficacy across diverse domains than traditional machine learning techniques, as the most popular approach for pattern recognition. The classification problems for tabular data, however, are remain for the area of traditional machine learning. This paper introduces a novel network module designed to tabular data into high-dimensional tensors. The module is integrated into conventional deep learning networks and subsequently applied to the classification of structured data. The proposed method undergoes training and validation on four datasets, culminating in an average accuracy of 90.22%. Notably, this performance surpasses that of the contemporary deep learning model, TabNet, by 2.55%p. The proposed approach acquires significance by virtue of its capacity to harness diverse network architectures, renowned for their superior performance in the domain of computer vision, for the analysis of tabular data.

A Review on Detection of COVID-19 Cases from Medical Images Using Machine Learning-Based Approach

  • Noof Al-dieef;Shabana Habib
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2024
  • Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause

Modern Sphinx: X-ray Inspection Technology for Customs (현대판 스핑크스: 국경의 관문을 지키는 X-ray 판독 기술)

  • Lee, J.W.;Moon, T.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.37-47
    • /
    • 2020
  • Today, the volume of international trade by airplanes and ships is rapidly increasing, and the volume of trade over land is expected to increase as inter-Korean relations change. In customs processes, humans inspect using the naked eye; therefore, computer vision technology can be used to assist customs inspectors responsible for X-ray security screening. In particular, because of recent advances in deep learning technology, algorithms for image understanding and object detection performance are improving, and studies on their application to X-ray screening have been published. This manuscript describes trends in artificial intelligence X-ray image-reading technology to detect prohibited items. X-ray inspection AI technology is similar to the Sphinx, which was the guardian of the pyramids in ancient Egyptian mythology.

DIND Data Fusion with Covariance Intersection in Intelligent Space with Networked Sensors

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Latest advances in network sensor technology and state of the art of mobile robot, and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. In this study, as the preliminary step for developing a multi-purpose "Intelligent Space" platform to implement advanced technologies easily to realize smart services to human. We will give an explanation for the ISpace system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the DIND data fusion with CI of Intelligent Space. We will conclude by discussing some possible future extensions of ISpace. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions tracking multiple objects, human detection and motion assessment, with the results from the simulations run.