The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.
Since fires in uncontrolled environments pose serious risks to society and individuals, many researchers have been investigating technologies for early detection of fires that occur in everyday life. Recently, with the development of deep learning vision technology, research on fire detection models using neural network backbones such as Transformer and Convolution Natural Network has been actively conducted. Vision-based fire detection systems can solve many problems with physical sensor-based fire detection systems. This paper proposes a fire detection method using the latest YOLOv8, which improves the existing fire detection method. The proposed method develops a system that detects sparks and smoke from input images by training the Yolov8 model using a universal fire detection dataset. We also demonstrate the superiority of the proposed method through experiments by comparing it with existing methods.
위장관의 내시경적 병리학적 소견은 대장암의 조기 진단에 중요하다. 최근 CNN 기반 딥 러닝의 활용은 주관적 분석의 정확도와 조기 진단의 성능을 높이는 결과를 보였으나, 계산 복잡도가 높고 임상에 즉시 활용하기에는 상대적으로 낮은 정확도로 사용에 제한적이다. 이러한 문제를 해결하기 위해 본 논문에서는 대장암의 조기 발견을 위한 비전 트랜스포머 기반 내시경 병리 소견 분류법을 제안한다. 식도염, 폴립, 궤양성 대장염을 포함한 병리학적 소견이 있는 내시경 이미지를 각각 1,000개씩 사용하였으며, 제안된 접근 방식을 사용하여 세 가지 병리학적 소견을 분류할 때 98%의 분류 정확도를 보였다.
최근 초분광 영상을 활용하여 작물의 생육 분석 및 질병을 조기에 진단하는 다양한 연구들이 등장하였지만, 수많은 스팩트럼 밴드를 사용하거나 최적의 밴드를 탐색하는 것은 어려운 문제로 남아 있다. 본 논문에서는 초분광 영상을 이용한 딥러닝 기반의 최적화된 작물 영역 스펙트럼 밴드를 탐색하는 방법을 제안한다. 제안한 방법은 초분광 영상 내 RGB 영상을 추출하여 Vision Transformer 기반 Segformer을 통해 배경과 전경 영역을 분할한다. 분할된 결과는 그레이스케일 전환한 초분광 영상 각 밴드에 투영 후 전경과 배경 영역의 평균 픽셀 비교를 통해 작물 영역의 최적화된 스펙트럼 밴드를 탐색한다. 제안된 방법을 통해 전경과 배경 분할 성능은 평균 정확도 98.47%와 mIoU 96.48%의 성능을 나타내었다. 또한, mRMR 방법에 비해 제안 방법이 작물 영역 밀접하게 연관된 NIR 영역에 수렴하는 것을 확인하였다.
Vision Transformer(ViT)는 패치 간의 관계를 학습하지만, 색상, 질감, 경계와 같은 중요한 특징을 간과할 경우 의료 분야나 얼굴 인식 등에서 성능 한계가 발생할 수 있다. 이를 해결하기 위해 본 연구에서는 Pairwise Attention Reinforcement(PAR) 모델을 제안한다. PAR 모델은 학습 이미지와 참조 이미지를 인코더에 입력하여 두 이미지 간의 유사성을 계산한 후, 높은 유사성을 보이는 이미지 어텐션 스코어 맵을 매칭하여 학습 이미지의 매칭 영역을 강화한다. 이를 통해 이미지 간의 중요한 특징이 강조되며, 미세한 차이도 구별할 수 있다. 시계 그리기 검사 데이터를 사용한 실험에서 PAR 모델은 Precision 0.9516, Recall 0.8883, F1-Score 0.9166, Accuracy 92.93%를 기록하였다. 본 모델은 Pairwise Attention 방식을 이용한 API-Net 대비 12% 성능이 향상되었으며, ViT 모델 대비 2%의 성능 향상을 보였다.
To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.
최근 추천 시스템 연구에서는 사용자와 아이템 간 상호 작용을 보다 잘 표현하고자 다양한 딥 러닝 모델을 적용하고 있다. ONCF(Outer product-based Neural Collaborative Filtering)는 사용자와 아이템의 행렬을 외적하고 합성곱 신경망을 거치는 구조로 2차원 상호작용 맵을 제작해 사용자와 아이템 간의 상호 작용을 더욱 잘 포착하고자 한 대표적인 딥러닝 기반 추천시스템이다. 하지만 합성곱 신경망을 이용하는 ONCF는 학습 데이터에 나타나지 않은 분포를 갖는 데이터의 경우 예측성능이 떨어지는 귀납적 편향을 가지는 한계가 있다. 본 연구에서는 먼저 NCF구조에 Transformer에 기반한 ViT(Vision Transformer)를 도입한 방법론을 제안한다. ViT는 NLP분야에서 주로 사용되던 트랜스포머를 이미지 분류에 적용하여 좋은 성과를 거둔 방법으로 귀납적 편향이 합성곱 신경망보다 약해 처음 보는 분포에도 robust한 특징이 있다. 다음으로, ONCF는 사용자와 아이템에 대한 단일 잠재 벡터를 사용하였지만 본 연구에서는 모델이 더욱 다채로운 표현을 학습하고 앙상블 효과도 얻기 위해 잠재 벡터를 여러 개 사용하여 채널을 구성한다. 마지막으로 ONCF와 달리 부가 정보(side information)를 추천에 반영할 수 있는 아키텍처를 제시한다. 단순한 입력 결합 방식을 활용하여 신경망에 부가 정보를 반영하는 기존 연구와 달리 본 연구에서는 독립적인 보조 분류기(auxiliary classifier)를 도입하여 추천 시스템에 부가정보를 보다 효율적으로 반영할 수 있도록 하였다. 결론적으로 본 논문에서는 ViT 의 적용, 임베딩 벡터의 채널화, 부가정보 분류기의 도입을 적용한 새로운 딥러닝 모델을 제안하였으며 실험 결과 ONCF보다 높은 성능을 보였다.
Multiview stereo (MVS) 3D reconstruction of a scene from images is a fundamental computer vision problem that has been thoroughly researched in recent times. Traditionally, MVS approaches create dense correspondences by constructing regularizations and hand-crafted similarity metrics. Although these techniques have achieved excellent results in the best Lambertian conditions, traditional MVS algorithms still contain a lot of artifacts. Therefore, in this study, we suggest using a transformer network to accelerate the MVS reconstruction. The network is based on a transformer model and can extract dense features with 3D consistency and global context, which are necessary to provide accurate matching for MVS.
Viet-Tuan Le;Khuong G. T. Diep;Tae-Seok Kim;Yong-Guk Kim
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2023년도 추계학술발표대회
/
pp.648-651
/
2023
Video anomaly detection aims to detect abnormal events. Motivated by the power of transformers recently shown in vision tasks, we propose a novel transformer-based network for video anomaly detection. To capture long-range information in video, we employ a multi-scale transformer as an encoder. A convolutional decoder is utilized to predict the future frame from the extracted multi-scale feature maps. The proposed method is evaluated on three benchmark datasets: USCD Ped2, CUHK Avenue, and ShanghaiTech. The results show that the proposed method achieves better performance compared to recent methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.