Acknowledgement
본 논문은 농림축산식품부의 재원으로 농림식품기술기획평가원의 디지털육종전환기술개발사업의 지원을 받아연구되었음(No. 322065-3).
References
- Byoungjun Kim, You-Kyoung Han, Jong-Han Park, and Joonwhoan Lee, "Improved Vision-Based Detection of Strawberry Diseases Using a Deep Neural Network," Frontiers in Plant Sciences, vol. 11, Jan. 2021.
- Ferentinos, Konstantions P. "Deep learning models for plant disease detection and diagnosis," Computers and Electronics in Agricultures, Vol. 145, pp. 311-318, 2018. https://doi.org/10.1016/j.compag.2018.01.009
- 고유진, 이현준, 정희자, 위리, 김남호, "딥러닝 기반 작물 질병 탐지 및 분류 시스템," 스마트미디어저널논문지, 제12권, 제7호, 9-17쪽, 2023년 https://doi.org/10.30693/SMJ.2023.12.7.9
- 박준, 심춘보, 김준영, 박성욱, 정세훈, "ResNet 기반 작물 생육단계 추정 모델 개발," 스마트미디어저널논문지, 제11권, 제2호, 53-62쪽, 2022년
- 김서정, 김형석, "Multi-Tasking U-Net 기반 파프리카 병해충 진단," 스마트미디어저널논문지, 제9권, 제1호, 16-22쪽, 2020년
- Moghadam, P., Ward, D., Goan, E., Jayawardena, S., Sikka, P., and Hernandez, E. "Plant Disease Detection using Hyperspectral Imaging," 2017 International Conference on Digital Image Computing: Techniques and Application, pp. 1-8, 2017.
- 최강인, 노혜민, 정성환, 유철중, "초분광 영상과 심층 신경망을 이용한 작물 생육상태 분류 기법 : 파프리카 잎 사례 연구," 한국정보기술학회논문지, 제17권, 제12호, 1-12쪽, 2019년 https://doi.org/10.14801/jkiit.2019.17.12.1
- Keunho Park, Young ki Hong, Gook hwan Km, and Joonwhoan Lee, "Classifiation of apple leaf conditions in hyper-spectral images for diagnosis of marssonia blotch using mRMR and deep neural network," Computers and Electronics in Agriculture, vol. 148, pp. 179-187, 2018. https://doi.org/10.1016/j.compag.2018.02.025
- Vaiphasa, C., Skidmore, A. K, De Boer, W. F., and Vaiphasa, T, "A hyperspectral band selector for plant species discrimination," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 62, no. 3, pp. 225-235, 2007. https://doi.org/10.1016/j.isprsjprs.2007.05.006
- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., and Schiele, B., "The cityscapes dataset for semantic urban scene understanding," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213-3223, 2016.
- A Dosovitskiy, L. Beyer, A Kolesnikov, D. Weissenbom, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Geliy, J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, Jun. 2020.
- E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "SegFormer: Simple and efficient design for semantic segmentation with transformers," Advances in Neural Information Processing Systems, vol. 34, Oct. 2021.
- Giuffrida, M. V., Minervini, M., and Tsaftaris, S., "Learning to count leaves in rosette plants," in Proceedings of the Computer Vision Problems in Plant Phenotyping, pp. 1-13, 2015.
- Shruti Jadon, "A survey of loss functions for semantic segmentation," 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1-7, Oct. 2020.
- Zhao, Zhenyu, Radhika Anand, and Mallory Wang. "Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform," 2019 IEEE international conference on data science and advanced analytics, pp. 442-452, 2019.
- Jonathan Long, Evan Shelhamer, and Trevor Darrell, "Fully convolutional networks for semantic segmentation. In Pcroceedings of the IEEE conference on computer vision and pattern recognition, 2015.
- Li, Gongyang, Zhi Liu, and Haibin Ling, "ICNet: Information conversion network for RGB-D based salient object detection," IEEE Transactions on Image Processing, vol. 29, pp. 4873-4884, 2020. https://doi.org/10.1109/TIP.2020.2976689
- Zhao, H., Shi, J., Qi, X., Wang, X., and, Jia, J., "Pyramid scene parsing network," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881-2890, 2017.
- Changqian Yu, Jingbo Wang, Changxin Gao, Gang Yu, Chunhua Shen, and Nong Sang. "Context prior for scene segmentation," In Pcroceedings of the IEEE conference on computer vision and pattern recognition, 2020.
- Ilya Loshchilov, Frank Hutter, "Decoupled weight decay regularization," arXiv preprint arXiv:1711.05101, 2017.
- Zhong, T., Zhao, J., Guo, X, Su, Q., & Fox, G., "RINAS: Training with Dataset Shuffling Can Be General and Fast," arXiv preprint arXiv:2312.02368, 2023.