• Title/Summary/Keyword: viscous pump

Search Result 58, Processing Time 0.028 seconds

A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter (토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구)

  • Won, Chan-Shik;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.5 s.38
    • /
    • pp.36-41
    • /
    • 2006
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

A study on the hydraulic limited slip differential system (유압식 차동제한장치에 관한 연구)

  • 허용;김형익;배봉국;석창성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.131-136
    • /
    • 2004
  • The limited slip differential(LSD) is a device which enables the driving force to be transmitted from one slipping wheel to another wheel in such case that the car is stuck in clay or snow. When the unwanted slipping occurs on one wheel, the LSD temporarily restraints the differential motion to transmit the driving force in the other wheel. So far, many types of LSD were developed such as mechanical lock type, disk clutch type, viscous coupling type, torsion type and multiple clutch type. However these types of LSD is too complicated and expensive, so it is used only for 4WD outdoor vehicles, military vehicles, and a portion of deluxe car. So, many studies has been devoted to improve new types of LSD to cover those demerits of existing LSDs that the hydraulic LSD is developed as arepresentative result of that. The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. This study has been devoted to suggest an improved hydraulic LSD. In order to achieve it, we designed a new type of hydraulic LSD, produced it and did a rig test with it on real vehicle. From the rig test, it has been confirmed that the new type of hydraulic LSD can be directly applied to exiting vehicles without changing the design criteria

  • PDF

Flow and torque analysis of hydraulic limited slip differential system (유압식 차동제한장치의 유동 및 토크해석)

  • Huh Y.;Kim H.I.;Bae B.K.;Seok C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1705-1709
    • /
    • 2005
  • The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. In this study, two dimensional(2-D) side pinion gear model was developed for hydraulic LSD. Using that model the flow analysis was conducted to preestimate pressure distributions of the side pinion gear according to the variations in the design factors such as oil viscosity, gear gap and rpm. Then, applying the obtained pressure distributions on the side pinion gear, finite element analysis was conducted to evaluate the torque characteristics. From the analysis results, the torque characteristics according to the design factor variations were evaluated.

  • PDF

Evacuation characteristic measurement of anti-suck back centering by mini vacuum system (미니 진공시스템을 이용한 역류방지 센터링의 배기 특성 측정)

  • Hong, Gwang-Gi;Go, Seok-Il;Do, U-Ri;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.255-256
    • /
    • 2009
  • The anti suck back centering (ASBC) for preventing backflow of oil for oil rotary pump was designed in the power failure. To evaluate the evacuation characteristics, we manufactured the mini vacuum system, personal computer, AD converter (National instrument, NI-6009), and automatic controller with touch panel for a basis. In this study, we measured the evacuation characteristics of ABSC and analyzed the flow field of viscous flow regime using a commercial software, CFD-ACE+. Also, the leakage of the advaced ASBC for leveling was measured.

  • PDF

Design and Analysis for the POD Type Waterjet System (POD형 물분사 추진장치의 설계 및 성능해석)

  • Kim, Moon-Chan;Chun, Ho-Hwan;Park, Won-Kyu;Byun, Tae-Young;Kim, Jong-Hyun;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.290-298
    • /
    • 2005
  • A study of design and analysis for the POD type waterjet is conducted. The analysis and design of waterjet system are more difficult than that of conventional propulsor because waterjet is complicatedly composed of many parts which are impeller, stator, inlet, nozzle, etc. The streamline method is traditionally used in the design of pump whose characteristics are similar to those of waterjet. This streamline method, however, has some limitation in analysis of a viscous flow as well as the interaction of inlet part of hull. In the present study, the developed CFD program is applied to the analysis of POD type waterjet. The developed program is first validated by comparing the existed experimental results. The designed waterjet system is also analyzed by the developed CFD program and analyzed results show that the performance of the present POD type waterjet is above the requirement.

Comparison of the Gel Formation Ability and Stability of Encapsulated Microbial Inoculant Using Extractable Alginate from Sea Tangle (다시마 추출 Alginate를 이용한 미생물 캡슐화제의 겔 형성능 및 생균력 비교)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.170-174
    • /
    • 2006
  • For the purpose of developing a high quality agricultural microbial inoculant, methods and materials for improving encapsulation were investigated. Preparation of capsule was conducted by improving extrusion system with micro-nozzle and peristaltic pump. The sodium alginate was selected because of its cheapness, stability of cells, and gel formation ability. The yields, physical properties and gel formation abilities of extractable alginate from sea tangle were investigated by hot water extractable and alkali soluble methods. The extraction yields of hot water extractable alginate (HWEA) and alkali soluble alginate (ASA) from sea tangle were 8 and 20%, respectively. The HWEA was almost not viscous even in 1.5% of the sample solution, whereas the ASA was very highly viscous in above 3% sample solution. The gel formation ability of each samples varied from 1.5% to 5% and the ASA showed a good gel formation ability at 3% solution as commercial alginate (CA). The soil microbial inoculant, Bacillus thuringiensis, Bacillus subtilis, Lactobacillus plantarum and Geotrichum candidum encapsulated sodium alginate with starch and zeolite for stabilizer. The survivability of encapsulated soil microbial inoculant using alginate without stabilizer appeared to be 66, 52, 70 and 50%, respectively. Inclusion of starch and zeolite with alginate bead increased viabilities in Bacillus sp. and Geotrichum candidum by 81-83% and 89%, respectively.

A Study on Feed Rate Characteristics of Motor-driven Cylinder Lubricator with Electronic Control Quill in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 전자제어 퀼 부착 모터구동 실린더 주유기의 송출유량 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Jung, Yeun-Hak;Kim, In-Deok;Kang, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, authors first developed a motor-driven cylinder lubricator for a Wartsila Switzerland large two-stroke diesel engine. The characteristic of the developed product is that can control automatically the oil feed rate with a load fluctuation by the motor drive and the offset cam. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and to improve performances as a cylinder lubricator. In this study, the effects of pump motor speed, plunger stroke and cylinder back pressure on oil feed rate, maximum discharge and delivery pressures are experimentally investigated by using the electronically controlled quill injection system and distributer in the developed cylinder lubricator. It is found that the oil feed rates of electronic control and mechanical type quills with the in-cylinder back pressure are differently characterized by the role of accumulator, the viscous resistance of contact area, etc. It can be also shown that the maximum discharge pressure of the electronic control quill is lower than the mechanical type one but the maximum discharge pressure difference of two types decreased as plunger stroke is small, and the maximum delivery pressures of two types increased as plunger stroke, motor speed and back pressure are elevated but the maximum delivery pressure of mechanical type is higher than the one of electronic control type.

Optimization of Screw Pumping System (SPS) for Mass Production of Entrapped Bifidus

  • Ryu, Ji-Sung;Lee, Yoon-Jong;Choi, Soo-Im;Lee, Jae-Won;Heo, Tae-Ryeon
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2005
  • Process of screw-pumping system (SPS) was optimized for mass production of encapsulated bifidus. SPS entrapment device was composed of feeding component, with optimized nozzle size and length of 18G (0.91 cm) and 4 mm, respectively, screw pump, and 37-multi-nozzle. Screw component had five wing turns [radius (r)=26 to 15 mm] from top to bottom of axis at 78-degree angle from middle of the screw, and two wings were positioned at screw edge to push materials toward nozzle. For nozzle component, 37 nozzles were attached to 20-mm round plate. Air compressor was attached to SPS to increase productivity of encapsulated bifidus. This system could be operated with highly viscous (more than 300 cp) materials, and productivity was higher than $1128\;{\pm}\;30\;beads/min$. Viability of encapsulated bifidus was $5.45\;{\times}\;10^8\;cfu$/bead, which is superior to that of encapsulated bifidus produced by other methods ($2.51{\times}10^8\;cfu$/bead). Average diameter of produced beads was $2.048\;{\pm}\;0.003\;mm$. Survival rate of SPS-produced encapsulated bifidus was 90% for Simulator of the Human Intestinal Microbial Ecosystem test and 88% in fermented milk (for 14 days). These results show SPS is effective for use in development of economical system for mass production of viable encapsulated bifidus.