• 제목/요약/키워드: viscous instability

검색결과 47건 처리시간 0.021초

Performances of non-dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.91-98
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

액상으로 분사되는 기체의 불안정성 해석 (Instability analysis of gas injection into liquid)

  • 김형준;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.57-60
    • /
    • 2006
  • 액상의 환경으로 고속의 기체가 분사될 때 기체-액체 표면에서 일어나는 불안정성에 대해 점성전위 유동의 이론을 이용하여 분석하였다. 기체의 속도가 낮을 경우 액상으로 기포로 형성되지만 속도가 증가하면서 기체는 제트의 형태로 변하게 되는데, 천음속 구간에서 제트로 변하게 되는 것으로 알려져 있다. 본 연구에서는 주로 액체 제트를 해석하는데 사용된 점성전위유동이론을 기체 제트의 불안정성 해석에 응용하였다. 천음속 구간에서 기체 제트의 성장률이 변하는 것을 확인하였다. 초음속 구간으로 가면서 성장률이 감소하는 것을 확인하였다. 그리고 이를 레이놀즈수와 같은 무차원수에 대해 기체 제트의 성장률의 변화에 대해 알아보았다.

  • PDF

미소채널 내에서의 예혼합화염의 연소불안정성 (Combustion instabilities of the Premixed flame in Micro-Channel)

  • 강상훈;백승욱;임홍근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.209-214
    • /
    • 2003
  • The Saffman-Taylor instability mechanisms in laminar premixed flames in a Hele-Shaw cell are investigated using two-dimensional numerical simulations with Poiseuille assumption for the viscous effect. The baseline calculations considering the Darrieus-Landau and diffusive-thermal instability modes show the results consistent with the classical linear instability theory. With the Saffrnan-Taylor instability mechanism. the overall effect is to enhance the destabilizing mechanism by providing an increased viscous force in the product gas. The linear instability behavior is found to qualitatively similar to the Darrieus-Landau mechanism. However, the results in the nonlinear range demonstrate that there may exist distinct characteristic time scales associated with Darrieus-Landau and Saffman-Taylor mechanisms, such that the latter effect sustains longer in time, contributing to a higher overall flame speed.

  • PDF

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.

점성포텐셜유동을 이용한 이상유동장의 표면안정성 해석 (Stability analysis of gas-liquid interface using viscous potential flow)

  • 김형준;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3033-3038
    • /
    • 2007
  • In this research, Rayleigh instability of gas-liquid flow in annular pipe is studied in film boiling using viscous potential flow. Viscous potential flow is a kind of approximation of gas-liquid interface considering velocity field as potential including viscosity. A dispersion relation is obtained including the effect of heat and mass transfer and viscosity. New expression for dispersion relation in film boiling and critical wave number is obtained. Viscosity and heat and mass transfer have a stabilizing effect on instability and its effect appears in maximum growth rate and critical wave number. And the existence of marginal stability region is shown.

  • PDF

점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과 (Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force)

  • 장탁순;고준빈;류시웅
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

ON RIVLIN-ERICKSON ELASTICO-VISCOUS FLUID HEATED AND SOLUTED FROM BELOW IN THE PRESENCE OF COMPRESSIBILITY, ROTATION AND HALL CURRENTS

  • Gupta, Urvashi;Sharma, Gaurav
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.51-66
    • /
    • 2007
  • A layer of compressible, rotating, elastica-viscous fluid heated & soluted from below is considered in the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. Again, the dispersion relation is analyzed numerically & the results depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system which were non-existent in their absence. The case of overstability is discussed & sufficient conditions for non-existence of overstability are derived.

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structures

  • Mejia-Nava, Rosa Adela;Ibrahimbegovic, Adnan;Lozano-Leal, Rogelio
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.47-62
    • /
    • 2020
  • In this paper we study the control for nonlinear geometric instability problem of a deep or a shallow truss or yet a frame structure. All the structural models are built with geometrically exact truss and beam finite elements.The proposed models can successfully handle large overall motion under static or dynamic conservative load.The control strategy considers adding a damping from either friction device or viscous damper.This kind of control belong to well-known concept of passivity. Different examples are presented in order to illustrate the proposed theoretical developments.