Browse > Article
http://dx.doi.org/10.12989/csm.2020.9.1.047

Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structures  

Mejia-Nava, Rosa Adela (Universite de Technologie Compiegne, Laboratoire Roberval of Mechanics)
Ibrahimbegovic, Adnan (Universite de Technologie Compiegne, Laboratoire Roberval of Mechanics)
Lozano-Leal, Rogelio (Universite de Technologie Compiegne)
Publication Information
Coupled systems mechanics / v.9, no.1, 2020 , pp. 47-62 More about this Journal
Abstract
In this paper we study the control for nonlinear geometric instability problem of a deep or a shallow truss or yet a frame structure. All the structural models are built with geometrically exact truss and beam finite elements.The proposed models can successfully handle large overall motion under static or dynamic conservative load.The control strategy considers adding a damping from either friction device or viscous damper.This kind of control belong to well-known concept of passivity. Different examples are presented in order to illustrate the proposed theoretical developments.
Keywords
instability; control; viscous damping; friction damping;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Abolfazl, J.N., Gholamreza, S.J. and Reza, K. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21, 569-582. https://doi.org/10.12989/cac.2018.21.5.569.   DOI
2 Argyris, J.H. and Symeonidis, S. (1981), "Nonlinear finite element analysis of elastic systems under nonconservative loading-Natural formulation. Part I. Quasistatic problems", Comput. Meth. Appl. Mech. Eng., 26(l), 75-124. https://doi.org/10.1016/0045-7825(81)90131-6.   DOI
3 Bolotin, V.V. (1963), Fundamentals of Structural Stability, Pergamon.
4 Chapra, S.C. and Canale, R.P. (2015), Numerical Methods for Engineers, McGraw-Hill.
5 Chen, W.F. and Lui, E.M. (1987), Structural Stability, Elsevier
6 Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill.
7 El Houcine, M., Mamouri, S. and Ibrahimbegovic, A. (2018), "A controlled destruction and progressive collapse of 2D reinforced concrete frame", Coupl. Syst. Mech., 7, 111-139. https://doi.org/10.12989/csm.2018.7.2.111.   DOI
8 Guerrero-Sanchez, M.E., Abaunza, H., Castillo, P., Lozano, R., Garcia-Beltran, C. and Rodriguez-Palacios, A. (2016), "Passivity-based control for a micro air vehicle using unit quaternions", Appl. Sci., 7(1), 13. https://doi.org/10.3390/app7010013.   DOI
9 Hemat, A.E., Mehran, K. and Morteza, A. (2018), "Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects", Struct. Eng. Mech., 68(3), 359-368. https://doi.org/10.12989/sem.2018.68.3.359.   DOI
10 Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F.   DOI
11 Ibrahimbegovic, A. (1997), "On the choice of finite rotation parameters", Comput. Meth. Appl. Mech. Eng., 149, 49-71.   DOI
12 Brogliato B., Lozano, R., Maschke, B. and Egeland, O. (2008), Dissipative Systems Analysis and Control, Springer Series in Communications and Control Engineering.
13 Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Spriger.
14 Ibrahimbegovic, A. and Boujelben, A. (2018), "Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design", Coupl. Syst. Mech., 7, 233-254. https://doi.org/10.12989/csm.2018.7.2.233.   DOI
15 Ibrahimbegovic, A. and Frey, F. (1993), "Finite element analysis of linear and elastic initially curved beams non-linear planar deformations", Int. J. Numer. Meth. Eng., 36, 3239-3258. https://doi.org/10.1002/nme.1620361903.   DOI
16 Ibrahimbegovic, A. and Taylor, R.L. (2002), "On the role of frame-invariance in structural mechanics models at finite rotations", Comput. Meth. Appl. Mech. Eng., 191, 5159-5176. https://doi.org/10.1016/S0045-7825(02)00442-5.   DOI
17 Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupl. Syst. Mech., 2(4), 349-374. https://doi.org/10.12989/csm.2013.2.4.349.   DOI
18 Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2018), "Coupled testing-modeling approach to ulitmate state computation of steel structures with connections for statics and dynamics", Coupl. Syst. Mech., 7, 555-581. https://doi.org/10.12989/csm.2018.7.5.555.   DOI
19 Inman, D.J. (2014), Engineering Vibration, Pearson Education.
20 Inman, D.J. (2006), Vibration with Control, John Wiley Sons.
21 Lozano R., Brogliato, B., Maschke, B. and Egeland, O. (2008), "Passivity-based control system analysis and design", Springer Series in Communications and Control Engineering.
22 Lozano, R. and Brogliato, B. (1992), "Adaptive control of robot manipulators with flexible joints", IEEE Tran. Auto. Control, 174-181.
23 Machado, L.G., Lagoudas, D.C. and Savi, M.A. (2009), "Lyapunov exponents estimation for hysteretic systems", Int. J. Solid. Struct., 46(6), 1269-1286. https://doi.org/10.1016/j.ijsolstr.2008.09.013.   DOI
24 Mamouri, S. and Ibrahimbegovic, A. (1999), "Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems", Comput. Struct., 70, 1-22. https://doi.org/10.1016/S0045-7949(98)00150-3.   DOI
25 Mamouri, S., Mourid, E. and Ibrahimbegovic, A. (2015), "Study of geometric nonlinear instability of 2D frame structures", Eur. J. Comput. Mech., 24, 246-258. https://doi.org/10.1080/17797179.2016.1181028.
26 Mohammad, A., Mahmoud, P. and Ali, G.A. (2019), "Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory", Steel Compos. Struct., 32(2), 157-171. https://doi.org/10.12989/scs.2019.32.2.151.   DOI
27 Oliveira, H., De Paula, A.S. and Savi, M.A. (2017), "Study of geometric nonlinear instability of 2D frame structures", J. Comput. Mech., 24(6), 256-278. https://doi.org/10.1080/17797179.2016.1181028.
28 Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic Instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.   DOI
29 Rajesh, K., Tanish, D. and Sarat, K.P. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.   DOI
30 Simitses, G.J. and Hodges, D.H. (2006), Fundamentals of Structural Stability, Elsevier.
31 Xu, Y.P., Zheng, Z.L., Liu, C.J., Wu, K. and Song, W.J. (2018), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction", Wind Struct., 26(6), 355-367. https://doi.org/10.12989/was.2018.26.6.355.   DOI