• Title/Summary/Keyword: viscous force

Search Result 295, Processing Time 0.023 seconds

벽식점성감쇠기의 감쇠 성능에 관한 기초적인 연구 (Experimental Study on Energy Dissipation Capacities of the Viscous Damping Wall)

  • 이장석;김남식;조강표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.246-251
    • /
    • 2003
  • This paper presents an experimental study on the energy dissipation characteristics of viscous damping wall (VDW). VDW is consisted of a plate floating in a thin case made of steel plated filled with highly viscous silicone oil. Because VDW demonstrates both viscous damping and stiffness characteristics, the viscous resisting force can be expressed as the sum of velocity dependant viscous damping force and displacement dependant restoring force. The viscous resisting force and energy absorbing capacity can be easily adjusted by changing three factors, i.e. viscosity of the fluid, gap distance and area of the wall plates. VDW was tested using a series of harmonic (sinusoidal) displacement history having different frequency and amplitude and the force-displacement relationship was recorded. The relationship between dissipated energy with three factors and the influence of exciting frequency on resisting force were Investigated

  • PDF

피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석 (Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston)

  • 김태종
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과 (Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force)

  • 장탁순;고준빈;류시웅
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

점성유동장에 병렬배치된 2차원 부유체에 작용하는 유체력에 관한 수치해석 (Numerical Analysis on Hydrodynamic Forces Acting on Side-by-Side Arranged Two-Dimensional Floating Bodies in Viscous Flows)

  • 허재경;박종천
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.425-432
    • /
    • 2012
  • Viscous flow fields of side-by-side arranged two-dimensional floating bodies are numerically simulated by a Navier-Stokes equation solver. Two identical bodies with a narrow gap are forced to heave and sway motions. Square and rounded bilge hull forms are compared to find out the effects of vortex shedding on damping force. Wave height, force RAOs, added mass and damping coefficients including non-diagonal cross coefficients are calculated and a similarity between the wave height and force RAOs is discussed. CFD which can take into account of viscous damping and vortex shedding shows better results than linear potential theory.

난류 파이프 유동 내 다섯 개의 영역 (Five layers in turbulent pipe flow)

  • 안준선;황진율
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.109-115
    • /
    • 2020
  • Five layers in mean flow are proposed by using the direct numerical simulation data of turbulent pipe flow up to Reτ = 3008. Viscous sublayer, buffer layer, mesolayer, log layer and core region are investigated. In the buffer layer, the viscous force is counterbalanced by the turbulent inertia from the streamwise mean momentum balance, and a log law occurs here. The overlap layer is composed of the mesolayer and the log layer. Above the buffer layer, the non-negligible viscous force causes the power law, and this region is the mesolayer, where it is the lower part of the overlap layer. At the upper part of the overlap layer, where the viscous force itself becomes naturally negligible, the log layer will appear due to that the acceleration force of the large-scale motions increases as the Reynolds number increases. In the core region, the velocity-defect form is satisfied with the power-law scaling.

Flow Divider Valve의 동특성에 미치는 마찰력의 영향 (Effect of Friction Force on the Dynamic Characteristics of a Flow Divider Valve)

  • 박태조;황태영
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.198-203
    • /
    • 2000
  • In this paper, a numerical analysis is carried out to show the effect of friction farce on the dynamic characteristics of a flow divider valve. The continuity equations and the equation of motion fur spool are numerically solved. The viscous friction force acting on the spool is considered analyzing the Reynolds equation which governs the viscous flow in the clearance gap between the spool and sleeve. Dynamic characteristics are highly affected by the viscous friction farce whose magnitude is relatively small compare with other fluid forces. Therefore present theoretical formulation and numerical scheme can be used generally in designing and performance evaluation of all the hydraulic spool valve.

  • PDF

균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究) (A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer)

  • 성두남;김시영
    • 수산해양교육연구
    • /
    • 제9권1호
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF

점성 유체중에 자유낙하 하는 니들과 스프링의 거동에 관한 연구 (STUDY ON THE BEHAVIOR OF NEEDLES AND SPRINGS FALLING FREELY IN A VISCOUS FLUID)

  • 고담;서용권
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.30-39
    • /
    • 2014
  • We report in this paper the analysis of the motion of a needle and a spring in a viscous fluid under the influence of gravitational force. Lateral shift as well as vertical motion of a needle falling in a viscous fluid has been observed from a simple experiment. We also observed the combined rotation and translation of a falling spring. The trajectory and velocity of the falling needle and the spring were obtained by using an image processing technique. We also conducted numerical simulation for both problems. For the falling-needle problem, we employed a theory; but it turns out that significant correction is required for the solutions to match the numerical and experimental data. For the falling spring problem various theoretical formula were tested for their justification, but none of the existing theories can successfully predict the numerical and experimental results.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

레일의 운동마찰력을 고려한 TMD 최적 설계 (Optimal design of tuned mass damper considering the friction between the moving mass and the rail)

  • 이상현;우성식;조승호;정란
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.582-587
    • /
    • 2007
  • In this study, based on the results from the sinusoidal base excitation analyses of a single degree of freedom system with a tuned mass damper (TMD), it is verified that optimal friction force can improve the performance of a TMD like a linear viscous damper which has been usually used in general TMD. The magnitude of the optimal friction increases with increasing mass ratio of the TMD and decreases with increasing structural damping. Particularly, it is observed that the optimized friction force gives better control performance than the optimized viscous damping of the TMD. However, because the performance of the TMD considerably deteriorates when the friction force increases over the optimal value, it is required to keep the friction force from exceeding the optimal value.

  • PDF