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STUDY ON THE BEHAVIOR OF NEEDLES AND SPRINGS FALLING FREELY 

IN A VISCOUS FLUID
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We report in this paper the analysis of the motion of a needle and a spring in a viscous fluid under the 
influence of gravitational force. Lateral shift as well as vertical motion of a needle falling in a viscous fluid has 
been observed from a simple experiment. We also observed the combined rotation and translation of a falling 
spring. The trajectory and velocity of the falling needle and the spring were obtained by using an image processing 
technique. We also conducted numerical simulation for both problems. For the falling-needle problem, we employed 
a theory; but it turns out that significant correction is required for the solutions to match the numerical and 
experimental data. For the falling spring problem various theoretical formula were tested for their justification, but 
none of the existing theories can successfully predict the numerical and experimental results.
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Nomenclature

 : Radius of the wire of needle and spring
  : Dimensionless parameter;

        
 

 : Radius of container

 : Dimensionless gap factor ()
, : Coefficient for the normal and tangential

         components of the drag force.

 : Constant, 

 : Mean diameter of spring

, : Buoyancy and gravity force

 : Viscous drag force and their components

 : Effective gravitational force

, : Normal and tangential components of force

 : Dimensionless geometric factor,

         ln ln     
 : Ratio of needle to the container radius 
 : Unit vector downward
, : Correction factors for the normal and 

tangential force components
 : Material length of the spring and needle
 : Axial length of the spring

  : Ratio of needle length to diameter, 

 : Dimensionless flow rate, ∞

RFT : Resistive force theory
 : Radial coordinate
 : Mean radius of spring 

 : Mean radius vector of spring 

 : Dimensionless radial distance 
 : Terminal velocity of needle and spring

 : Translational velocity of spring

 : Dimensionless velocity 
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 : Lateral shift of the needle
 : Helix angle of spring
 : Initial angle of the needle
 : Pitch of spring
 : Dynamic viscosity of fluid

 : Density of fluid

 : Density of solid

 : Angular velocity of needle

1. Introduction

The Propulsion of microorganisms by flagella motion 
has been a subject of considerable interest, especially in 
the period from 1950s to the 1970s when slender body 
theory for Stokes flow was developed. The work of 
Gray and Hancock[1] formed the foundation of the 
widely accepted resistive force theory, which provides a 
simple analytical method for calculating the swimming 
speed and thrust produced by the flagella motion[2]. 

A renewed interest in low Reynolds number 
propulsion has emerged in recent years due to the 
growing attention to bio-mimetics that has opened up 
the prospect of many new bio-robotic applications[3]. 
Development of effective devices of this kind requires a 
better understanding of propulsion at low Reynolds 
numbers, and even today the number of experimental 
studies on low Reynolds number propulsion is very 
limited. 

Recent findings from microfluidic studies have 
provided novel insights on the fundamental mechanisms 
by which a bacterium propels in a viscous fluid. Such 
insights helped the microfluidic technology to use the 
bio-molecular motors from flagellated bacteria as fluidic 
actuators to generate fluid motion in a microfluidic 
network and artificial swimming micro robot for 
biomedical applications[4].

Creation of thrust force due to the rotation of a 
spring, mimicking the rotating flagella, is obviously the 
foundation of the propulsion of microorganisms. In this 
case, the rotation of the surrounding fluid corresponds to 
the primary motion, whereas the axial motion 
corresponds to the secondary one. However, precise 
measurement of the force requires a sophisticated 
experimental facility and sensors. In this study, therefore, 
we contrive the reverse situation, in which the axial 
force is provided by the gravitation and the spring’s 
axial (primary) and rotational (secondary) motions are 

Fig. 1 Top view of the experimental setup

measured by image processing techniques, which is 
much easier than the original configuration. We aim in 
this study to confirm our understanding of the 
mechanism of the spring’s motion and the validity of 
the relevant theoretical formula reported in the literature 
to estimate the spring’s motions. Since the total drag 
force acting on the spring can be considered as the line 
integral of the force density (force per unit length) 
acting on the small element of the spring, the situation 
of a falling needle is thought to be a more fundamental 
model. 

Here we report the results obtained from experiment, 
numerical and theoretical studies on the motion of two 
kinds of objects, i.e., a helical spring and cylindrical 
needle. The present study focuses on the creeping flow 
over those objects falling freely in viscous fluid under 
the influence of gravity. Two kinds of theoretical 
approaches, the theory proposed by Park and Irvine[5,6] 
and Kim et al.[7] and the classical resistive-force theory 
were used to determine the motion of the needle and 
spring. Numerical calculations were also carried out 
using a commercial code (Ansys CFX V13.0). The 
reason for the lateral shift of needle during the travel in 
the viscous fluid (glycerol) is explored. Finally the 
optimum helix angle of the spring at which it produces 
maximum velocity ratio (ratio of the rotating velocity 
and the falling velocity) was evaluated from the 
numerical and theoretical analysis.

2. Experiment

The schematic of the experimental apparatus for a 
needle and a spring falling in a tank is shown in Fig. 1. 
The needle used for the experiment has dimensions, 
   cm and   mm (and 0.25 mm). The spring 
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(a) (b)

Fig. 2 Schematic of the needle (a) and spring (b)

has dimensions of  2.375 mm,   mm and 
 45° (and 31°) with an axial length of   cm. The 
helix angle of springs are calculated using the relationship 
given by

tan 


 (1)

Pure synthetic glycerol (90%, Samchun Pure Chemicals 
Co., Ltd) was used as the working fluid and its level was 
maintained at 20 cm. The temperature of the fluid was 
maintained at 22°C~23°C, which was measured using a 
standard thermometer just prior to the experiment. 
Viscosity of the fluid at different temperatures is measured 
separately from a falling-ball-viscometer experiment, which 
agreed well with the empirical data of Cheng[9]. The 
Reynolds number,   , based on the fluid 
density , viscosity , the terminal velocity  and the 
material diameter of the spring or the needle  turns out 
to be low enough for the Stokes flow approximation to be 
valid; using    kg/m3 and    Ns/m2, we 
get    for    mm and typical value    
cm/s, and    for   mm and typical value 
   cm/s. 

Terminal falling velocity, lateral shift of the needle and 
rotational velocity of the spring were calculated by using 
an image processing technique for the images recorded 
from a camera. 

3. Analytical Procedure

The schematic of the force balance for the needle 
falling under the gravity is given in Fig. 2(a); the same 
principle applies to the falling spring problem.

The terminal velocity and rotational velocity of the 
needles and springs were obtained from the force balance 
equation, 

 ≡   (2)

which is adopted in the theory proposed by Park and 
Irvine[5,6] and Kim et al.[7] for the needle and the 
resistive-force theory[1,11-13] for the spring. These 
theoretical methods were employed to estimate the terminal 
and rotational velocities of needles and springs.

3.1. Needle falling inclined to the vertical axis

A general formulation for the effective gravitational 
force, , and the formula for drag force, , for the 
needle falling vertically (  ) are given as

  
  (3)

   
  (4)

where,   is the dimensionless shear stress and 
  is a dimensionless factor (given in the nomenclature).

For the needle falling normal to the system axis 
(  ), the drag force is given by

  ln
 (5)

The terminal velocity of the falling needle, , is 
calculated by equating Eq. (3) and (4) for   , and Eq. 
(3) and (5) for    according to Eq. (2).

When the needle falls making an arbitrary angle   with 
respect to the vertical axis [see Fig. 2(a)], the drag force 
 must be considered to be a vectorial sum of the 
normal component  and the tangential component 
, which are given as

  ln sin
sin

(6)

 cos
 


 

(7)

Here, the correction factors  and   were calculated 
from Eq. (6) and (7) with the terminal velocity data 
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obtained from the experiment for the two extreme cases, 
   and   . The needle falls down showing a 
lateral shift when it is inclined to the system axis. The 
two unknowns  and   are obtained from the two 
requirements that the vertical component of  is equal 
to  and the horizontal component is zero.

3.2. Combined translation and rotation of a spring

A common way to study the interaction of the helix 
with its flow field is using the slender body theory that 
employs a Green function approach for the solution of 
Stokes equation. The disadvantage of this method is its 
computational expense[10]. This is the reason why we 
use in this work the resistive force theory which is also 
a common technique to study the dynamics of elastic 
filaments which compose the spring in a viscous fluid. 
In this theory, local friction coefficients per unit length 
parallel and perpendicular to the tangential vector of the 
filament were used.

Consider a rigid filament segment of unit length 
showing the translational velocity   and angular 
frequency  . The segment moves with a combined 
translational and rotational velocity     × , 
where     is the terminal linear velocity (  is the 
unit vector downward),     is the angular velocity 
vector of the spring and  is the radial vector (see 
Fig. 2(b)).

In resistive force theory, the force per unit length 
exerted by the fluid is proportional to the local 
centerline velocity  . The key element here is that the 
multiplying coefficient is however not identical to each 
other. Decomposing   into the normal and tangential 
components to the body centerline,  and  , we can 
write the two components of force per unit length as

  (8)

  (9)

In this paper, theoretical results of the velocity obtained 
with the coefficients of resistance proposed by various 
researchers for computing flagella motions were compared 
with each other and they are listed below. Firstly,

 ln


(10a)

 ln


(10b)

which were proposed by Gray and Hancock[1]. Cox[11] 
and Johnson and Brokaw[12] proposed the following 
forms.

 ln


(11a)

 ln


(11b)

In 1976, Lighthill[13] suggested the following.

 ln


(12a)

 ln


(12b)

where  . This study also considers a combined 
expression of resistance coefficients where the tangential 
coefficient   is taken from Eq. (10a) and the normal 
coefficient  from Eq. (12b).

The equations for the two unknowns,  and , are 
given as

  cossin (13a)

  sincos  (13a)

which were solved iteratively by using the standard 
Gauss-Seidel solver.

4. Numerical Scheme 

Numerical simulation of the Navier-Stokes equations for 
the motion of the falling needle and spring was conducted 
using a commercial code (Ansys CFX V13.0). The 
continuity and momentum equations are:

∇⋅  (14)




⋅∇  ∇∇

 (15)
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Fig. 3 Instantaneous variation of needle angle,   , with various 
orientations for   

In reality, the needle falls down with a lateral shift. 
The spring also falls down with rotation. To simulate 
those real situations, however, we need moving grids 
which may bring forth another source of numerical errors. 
We in this study therefore consider the relative motion of 
the fluid while the needle and spring are kept stationary. 
The vertical terminal velocity  and the lateral shift 
velocity of the needle is determined from the requirement 
of force balance as discussed in section 3. Similarly,  
and  of the spring is determined from the force balance, 
too.

5. Result and Discussion on a Falling Needle

Needles in general tend to shift laterally when they fall 
through the fluid after they are dropped with ≠ or 
≠. Moreover, it turned out that   varies with time 
while the needle is falling.

The instantaneous variation of   with time at several 
initial orientations to the system axis was obtained from 
the experiment as shown in Fig. 3 for    and Fig. 
4 for   .

The figures reveal that regardless of the initial angle of 
the needle, value of   tends to 90°. Obviously it is 
caused by the effect of the bottom wall of the container; 
apparently the needle always arrive at the bottom with 
  . Another reason lies in the fact that the stagnation 

Fig. 4 Instantaneous variation of needle angle,   , with various 
orientations for   

point of the flow near the leading edge of the needle is 
located on the bottom side whereas that near the trailing 
edge is located on the top side of the needle, respectively. 
As is well known, the pressure near the leading stagnation 
point is always higher than that near the trailing 
stagnation point in stokes flow, and thus we expect that 
the resultant restoring torque tends to make the needle to 
align horizontally.

We can also see from Fig. 3 and 4 that the needle 
with    shows faster variation of   in time than 
with   . This is mainly due to the fact that the 
two needles have the same length but the diameter of the 
former is twice the latter so that the needle with    
falls faster; it can be shown from Eq. (3) and (4) that the 
velocity is directly correlated with the square of the 
needle radius ().

Experimental results of  obtained from the numerical, 
theoretical and experimental methods are presented in Fig 
5(a) and 5(b). The theoretical results are given from the 
principle of force equilibrium described with Eq. (6) and 
(7) and thereafter; the two coefficients  and  are 
determined from the matching of the terminal velocity 
between the theory and experiment for the case of    
and   , respectively. The overall dependence of the 
terminal velocity on the inclination angle is well 
reproduced by the theory. We can also see that the needle 
falling with its axis parallel to the system axis (  , 
Fig. 5(a)) shows a higher velocity than the one falling 
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(a)

(b)

Fig. 5 Comparison of the terminal velocity of the needles obtained 
from numerical, analytical and experimental measurement 
for  (a)    and (b)   

normal to the axis (  , Fig. 5(b)) indicating that the 
viscous drag force acting on the needle caused by the 
normal component of the fluid velocity is higher than that 
caused by the tangential component.

As a consequence of such difference in the drag force, 
in the angle   between    and   , we can 
expect that the falling needle should tend to move to the 
direction experiencing a smaller drag force, i.e., parallel to 
the needle axis, which is called lateral shift.

The data of the lateral shift are presented in Fig 6(a) 
and 6(b). The theoretical data show that regardless of 
the dimensions of the needle, the angle   representing 

(a)

(b)

Fig. 6 Comparison of the lateral-shifts of the needle obtained from 
numerical, analytical and experimental measurement for 
(a)    and (b)   

the lateral shift shows maximum values between  
and  at the needle angle   in the range 
 ≦ ≦ . The numerical and experimental data, 
however, reveal reduced   values, less than . 
Because of the data scattering, the range of   for the 
maximum lateral shift cannot be provided from the 
experimental results. The numerical results give 
approximately    for   mm and    for 
  mm for the maximum lateral shift. The 
existence of such lateral shift in the falling needle is 
considered to be a basic mechanism of the self-rotation 
of a falling spring.
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(a)

(b)

Fig. 7 Comparison between the theoretical and numerical results
of terminal velocity for the case of vertically falling needle
at two values of dimensionless length factor  

The discrepancy between the numerical (or experimental) 
and analytical solutions in the terminal velocity and 
lateral shift angle is mainly due to the fact that the 
theory is based on the one-dimensional axis-symmetric 
configuration of the problem while the actual set-up is 
three-dimensional. For the case of vertically falling 
needle, for instance, the one-dimensional axis-symmetric 
velocity profile is possible only when the needle is 
infinitely long or the gap between the container and the 
needle is very small. The effect of the tank wall should 
be more pronounced in determining the lateral-shift 
motion.

(a)

(b)

Fig. 8 Contours of (a) axial velocity and (b) pressure near the 
falling spring of helix angle    

Fig. 7 reveal that the larger needle length indeed yields 
a better agreement between the theory and numerical 
solutions validating the argument given above.

6. Results and Discussions on a Falling Spring

We now present the results of the numerical, analytical 
and experimental studies on a falling spring.

Shown in Fig. 8 are the contours of the velocity and 
pressure. From Fig. 8(a), we notice that the velocity inside 
the spring is overall less than the free stream velocity 
which is due to the hydrodynamic interaction among coils 
of wires[3]. The pressure distribution of Fig. 8(b) is in 
line with the physical observation in low-Reynolds-number 
flows, i.e., high and low pressure near the leading and 
trailing stagnation points, respectively.

Comparison among the experimental, numerical and 
theoretical solutions of the terminal velocity  and the 
rotational velocity  for the springs with various helix 
angles are given in Fig. 8 and 9. Here five kinds of 
analytical formula are employed in obtaining the theoretical 
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Fig. 9 Comparison of the Terminal velocity data obtained from 
experimental, numerical and theoretical calculations for the 
springs with various helix angles and having the following 
dimensions;    cm,   mm, and  
mm

data and the experimental data are obtained only for two 
helix angles.

In Fig. 9 we can see that among the data for the 
terminal velocity, those obtained from the theory of Park 
and Irvine[5] and Kim et al.[7] shows a relatively close 
agreement with the experimental data. In overall, however, 
none of the theories or numerical data can fit the 
experimental data satisfactorily. In particular at helix 
angles close to zero, the discrepancy is more significant.

Fig. 10 shows comparison among the experimental, 
numerical and theoretical solutions of the rotational 
velocity of the springs with various helix angles. The 
experimental data are higher than any other results, among 
which, the solutions obtained from the theory combining 
Eq. (10a) and (12b) yield a closer agreement with the 
experimental data.

In Fig. 10, however, all the theoretical predictions 
follow the same trend; that is, the rotational velocity tends 
to zero at   and   and it becomes maximum 
at the critical angle around   . We can see that the 
critical angle for the spring, at which the rotational 
velocity is maximized, is very close to the critical angle 

Fig. 10 Comparison of the rotational velocity data obtained from 
experimental, numerical and theoretical calculations for 
the springs with various helix angles and having the 
following dimensions;    cm,   mm, and 
  mm (description on the symbols is the same as 
in Fig. 8)

of inclination of a falling needle showing the maximum 
lateral shift as shown in Fig. 6. This indicates that 
rotation of the falling spring should be related to the 
lateral shift of the needle. Thus, we can say that rotation 
of the falling spring is caused by the fact that the normal 
component of the fluid drag force acting on the wire is 
larger than the tangential component. Fig. 10 also reveals 
that the theoretical data given by Park and Irvine[5] with 
correction factors show the best agreement with the 
numerical ones.

Our prediction of the critical helix angle of the spring 
seems to be in close relation to the critical helix angle of 
the spring ( ≦ ≦ ) showing the maximum thrust 
as predicted by Zhong et al.[3].

There are discrepancies among the numerical, 
experimental and theoretical data as shown in Fig. 9 and 
10. We assume that two factors not considered in RFT 
are the main reason for the discrepancy in particular 
between the numerical and theoretical results; the 
hydrodynamic interactions between the helical loops of the 
spring and the end effect as reported by Zhong et al.[3].

We notice from Fig. 9 that the theoretical terminal 
velocity is much smaller than the numerical one at low 
helix angles. This may be understood from the fact that at 
small helix angles the fluid drag force should be smaller 
than the theory, which is not considered in the theory 
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(e.g., Gray and Hancock[1] and Lighthill[13]). Thus we 
expect a faster falling motion of the spring than the 
theory predicts for small helix angles, which is in line 
with the data shown in Fig. 9. On the other hand, at 
large helix angles close to , the numerical results of 
the terminal velocity are smaller than the theoretical 
prediction. At high helix angles, the number of turns of 
spring coil is small and thus the end effect of the spring, 
which is also not considered in the theory, should be 
more relevant leading to a higher drag force. Thus the 
theoretical results are expected to be larger than the 
numerical ones for high helix angles as shown in Fig. 9.

7. Conclusions

In this work free falling motion of needles and helical 
springs was studied by using experiment, numerical 
simulation and theoretical analysis with an ultimate 
purpose of understanding the propulsion mechanism of 
microorganisms with flagella in bio-fluids as the springs 
were considered as the macroscopic model of the actual 
flagella.

We can list up important outcomes of our research 
work as follows
(1) The terminal velocity data of needles clearly show that 

the needle vertically oriented falls faster than the one 
horizontally oriented.

(2) The lateral shift occurs in the motion of a falling 
needle its magnitude being dependent upon the 
orientation of the needle, and the maximum lateral 
shift occurs for the needle falling at the angle   in 
the range  ≦ ≦ .

(3) The reason for the discrepancy between the numerical 
and analytical solutions for the motion of needles is 
due to the idealized assumption of an infinitely long 
needle so that the problem becomes axi-symmetric and 
one-dimensional which is obviously contrary to the 
actual situation.

(4) The theoretical terminal velocity of springs is much 
smaller at low helix angles than the numerical data 
especially at ≦ , which is understood from the 
fact that at small helix angles the hydrodynamic 
interaction between neighboring coils actually becomes 
larger and thus the theory over-predicts the fluid drag 
force. 

(5) In the distribution of the rotational velocity versus the 
helix angle, both the numerical and theoretical 
predictions follow the same trend; that is, the 

rotational velocity tends to zero at the helix angle 
   and   and it becomes maximum at the 
critical angle around  .

(6) Most of the theoretical data (especially RFT) for the 
terminal velocity and rotational velocity of springs 
deviate from the numerical and experimental data, 
because of the hydrodynamic interaction between the 
helical coils and the end effect as addressed in Zhong 
et al.[3].
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