• Title/Summary/Keyword: viscosity increase

Search Result 1,120, Processing Time 0.025 seconds

쌀보리를 기질로 한 알콜발효의 최적 액화효소

  • Nam, Ki-Du;Kim, Woon-Sik;Choi, Myung-Ho;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.217-221
    • /
    • 1996
  • Various treatments of naked barley with commercial liquefying enzymes have been emploved to reduce high viscosity of naked barley in cooking as a raw material for alcohol production and to increase alcohol yield. The enzyme BAN used for cooking and liquefaction of naked barley was able to make a reduction of one third of viscosity and to enhance alcohol yield of 4 l/Ton of raw material than the T120L was. Of course, alcohol yield depended in part on the applied saccharifying enzymes. The low temperature cooking of naked barley with BAN was favorable compared with high temperature cooking for both of reducing viscosity (210 vs. 237 cp) and final alcohol yield (Yp/so: 0.397 vs. 0.395 g/g) in industrial scale.

  • PDF

A Study on the Temperature Dependence of Waterless Lithography (무습수 평판인쇄의 온도 의존성에 관한 연구)

  • 신춘범;강상훈;이상남
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.42-54
    • /
    • 2001
  • The combination of a silicone surfaced plate and high viscosity ink produced a waterless printing system that worked well, but had limitation. The limitation was that this system was restricted to relatively short run lengths. In the waterless printing process, the press tended to heat up rapidly. Heat in turn, broke down the resins in the inks, causing them to become more fluid. When the ink is heated, the viscosity will drop, the ink will become too liquid and the plate will no longer be able to resist it. The ink will adhere to the non-print portions of the plate, and will print as a very fine mist or speckle pattern in the non-image area. On the other hand, when the ink gets too cold, viscosity will increase until ink transfer is impeded. This study carried otu to investigate the effect of temperature variations of the inks on the print quality in waterless lithography and to examine the adaptability of waterless lithography to conventional offset press without cooling system.

  • PDF

Utilization of Brabender Visco-Amylograph to Detect Irradiated Starches

  • Yi, Sang-Duk;Oh, Man-Jin;Yang, Jae-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2000
  • A study was carried out to establish the detection method of irradiated corn, potato, and sweet potato starches. The samples were packed in polyethylene bags and irradiated with 1, 3, 5, 7, 10, and 15 kGy using a Co-60 irradiator. The maximum viscosity of irradiated and unirradiated corn, potato, and sweet potato starches reduced by increase of irradiation dose levels and showed significant differences which clearly showed the effect of irradia-tion dose levels (p<0.05). Regression expressions and coefficients (p<0.000) or corn, potato, and sweet potato starches were y=-38.538x+718.23(r2=0.9761), y=669.97e-0.1372x (r2=0.9820) and y=-42.544x+730.26(r2=0.9939), respectively. Nor-malized parameter A,B and C values showed a dose dependent relationship and were a better parameter for detecting the irradiated starches than that of the maximum viscosity itself.

  • PDF

A theoretical study on the shock-absorbing characteristic of safety helmet (안전모의 충격전달에 관한 이론적 고찰)

  • 김연우;박경수
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 1990
  • The need for the protection of workers in many industrial workstations has long been recognized, and many type of protective equipment have been devised. In many protective equipment designs, this study set limits to the safety helmet. The direct closed head impact problem was idealized as a linear-damped spring model. This study concerns what properties of helment should afford optimal protection in a direct closed head impact problem. The solution to the problem was achieved through analytic method and numerical computation. The answer was found in terms of 4 parameters : 1) rigidity of shell, 2) viscosity of shell, 3)rigidity of harness, 4) viscosity of harness. The choices are as follows 1) to reduce the rigidity value of harness as small as possible 2) to increase the viscosity value of harness as large as possible. 3) to select the rigidity value of shell sufficient for preventing a breakage.

  • PDF

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon;Inkook Yoon;Minjin Kim;Junsu Lee;Younguk Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.211-219
    • /
    • 2023
  • This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues (접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구)

  • Ko, Jin Young;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.468-473
    • /
    • 2018
  • In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.

Experimental study on variation in rheological properties of concrete subjected to pressure and shearing by pumping

  • Jung Soo Lee ;Kyong Pil Jang ;Chan Kyu Park ;Seung Hee Kwon
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • In the pumping process, concrete moves along the pipe and experiences both pressure and shear. This changes the workability and flow characteristics of the concrete. However, the effect of pressure and shear on the change in properties of concrete during the pumping process has not yet been accurately identified. This study analyzed the effects of pressure and shear on the properties of concrete during pumping. For quantitative tests, lab-scale test equipment capable of simulating the pressure and shear applied to concrete during pumping was used. For one coarse aggregate type, two paste types, three mortar types, and five concrete types, the effects of pressure, shear, and shear under pressure conditions were examined by varying the maximum pressure (0 to 200 bar) and the rotational speed of the vane for shear (0 to 180 rpm). Under the maximum pressure condition of 200 bar, the water absorption of coarse aggregate increased by 0.62% and that of fine aggregate also increased. When the concrete was under pressure, significant changes (a reduction in a slump and an increase in viscosity and yield stress) compared with the effect of the elapsed time occurred owing to an increase in the water absorption of the aggregates. When both pressure and shear were applied to concrete, both the slump and viscosity decreased. As the rotational speed of the vane increased, changes in properties became significant. Shearing in the absence of pressure maintained the properties of concrete. However, shearing under pressure conditions caused a reduction in slump and viscosity.

The Influences of Fatty Alcohol and Fatty Acid on Rheological Properties of O/W Emulsion (고급알코올과 고급지방산이 O/W에멀젼의 유동특성에 미치는 영향)

  • Zhoh, Choon-Koo;Lee, Kang-Yen;Kim, Dong-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • The objective of this study is to analyze the influences of fatty alcohols and fatty acids on rheological properties of oil in water (O/W) emulsions using viscosity and rheograms. As the chain length of fatty alcohols and fatty acids lengthened, the viscosity of emulsions was increased. The influence of fatty alcohols on viscosity enhancement was stronger than that of fatty acids. Both stearyl alcohol and cetearyl alcohol, which have carbon chain length similar to lipophilic portion of surfactant used in emulsion preparation, had showed the best increase in viscosity of O/W emulsions. O/W emulsions prepared with fatty alcohols and fatty acids were pseudo-plastic fluid and they showed shear thinning behaviour like as the common cosmetic emulsions. O/W emulsions prepared with cetyl alcohol, cetearyl alcohol and stearyl alcohol were thixotropic fluids and thixotropy increased with an increase in the concentration of fatty alcohols and fatty acids. Also O/W emulsions prepared with fatty alcohols were more thixotropic than those prepared with fatty acids. For the sake of viscosity increase related to O/W emulsions stability and spreadability enhancement related to payoff, it is thought that fatty alcohols are more useful than fatty acids in the O/W emulsions as the emulsion stabilizer.

Quality Characteristics of Dried Noodles with Added Loquat Leaf Powder (비파 잎 분말을 첨가한 국수의 품질 특성)

  • Park, In-Duck;Cho, Hee-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.6
    • /
    • pp.709-716
    • /
    • 2011
  • The principal objective of this study was to evaluate the quality characteristics of dried noodles when different concentrations of Loquat (Eriobotyya japonica Lindley) leaf powder (LLP) were added to the wheat flour. The cooking quality, mechanical texture properties, and viscosity were measured, and a sensory evaluation was conducted with the prepared noodles. The gelatinization points of the composite LLP-wheat flours were shown to increase. As measured via amylograph, viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes, and maximum viscosity values of those samples decreased as the LLP content increased. As increasing amounts of LLP were added, the L and a values were reduced, whereas the b value was increased and the color values, weight, and volume of the cooked noodle increased, as did the turbidity of the soup. With regard to the textural characteristics, the LLP additive increased hardness and cohesiveness, and reduced adhesiveness and springiness. Overall, the noodles prepared with 5% LLP were preferred more than the others, according to the results of our sensory evaluation.