• Title/Summary/Keyword: viscoelastic system

Search Result 240, Processing Time 0.027 seconds

Dynamic design of piezoelectric structures for an efficient tactile feedback of index finger on touch screen (검지의 효율적 화면접촉감응을 위한 압전-구조물계의 동적설계)

  • Park, Young-Min;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.280-281
    • /
    • 2009
  • Piezoelectric vibrators can be good replacements of electric motors to excite touch screen of a mobile device owing to small volume and low power consumption. One problem to be solved yet for real application is larger excitation force or moment than available currently. More efficient excitation by a piezoelectric vibrator could be achieved by operating at one of resonance frequencies of the system, which must also be as close as possible to frequency range where index finger is most sensitive and increasing transmission force or moment at that frequency. In this study, dynamic models are derived for the piezoelectric exciter and an adhesive viscoelastic layer, which connect the exciter to the screen. The adhesive layer is modeled as distributed stiffness by considering its geometric shape to relative to the piezoelectric exciter. Then, equations of motion for the piezoelectric exciter and the adhesive layer are derived using Hamilton's principle. Based on this model, dynamic characteristics of the exciter will be designed to maximize the force or moment transmitted onto the screen structure.

  • PDF

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation (전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰)

  • Choi, Seung-Bok;Park, Yong-Kun;Suh, Moon-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Frequency response of film casting process

  • Hyun, Jae-Chun;Lee, Joo-Sung;Jung, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.91-96
    • /
    • 2003
  • The sensitivity of the product to the ongoing sinusoidal disturbances of the process has been investigated in the film casting of viscoelastic polymer fluids using frequency response analysis. As demonstrated for fiber spinning process (Jung et al., 2002; Devereux and Denn, 1994), this frequency response analysis is useful for examining the process sensitivity and the stability of extensional deformation processes including film casting. The results of the present study reveal that the amplification ratios or gains of the process/product variables such as the cross-sectional area at the take-up to disturbances exhibit resonant peaks along the frequency regime as expected for the systems having hyperbolic characteristics with spilt boundary conditions (Friedly, 1972). The effects on the sensitivity results of two important parameters of film casting, i.e., the fluid viscoelasticity and the aspect ratio of the casting equipment have been scrutinized. It turns out that depending on the extension thinning or thickening nature of the fluid, increasing viscoelasticity results in enlargement or reduction of the sensitivity, respectively. As regards the aspect ratio, it has been found that an optimum value exists making the system least sensitive. The present study also confirms that the frequency response method produces results that corroborate well those by other methods like linear stability Analysis and transient solutions response. (Iyengar and Co, 1996; Silagy et al., 1996; Lee and Hyun, 2001).